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Abstract

This thesis is structured in two parts: in the first part, we introduce a few standard objects
such as microbundles, spherical fibrations, spaces of smooth structures and recall import-
ant results about them. We also provide a short introduction to smoothing theory and
obstruction theory.
In the second part, we use facts from the first part to prove that there is a homotopy
equivalence of Postnikov 5-truncations BSTop(4)≤5 ≃ BSO(4)≤5 × 𝐾 (Z/2, 4). This ho-
motopy equivalence is closely connected to the relation between the spaces of smooth
structures Sm(𝑀) and formally smooth structures Sm𝑓 (𝑀) on a 4-manifold𝑀 . We estab-
lish a microbundle analogue of Dold and Whitney’s classification of vector bundles over
4-dimensional CW complexes ([DW59]) as an application of the mentioned homotopy
equivalence of 5-truncations.
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1 Introduction

Classification of smooth structures on a topological manifold is a classical problem in geometric
topology. It is known that in dimensions up to 3, all topological manifolds admit a unique
smooth structure up to diffeomorphism. The situation in dimensions 5 and above is more com-
plicated; nevertheless, Kirby and Siebenmann proved a classification theorem which provides a
comprehensive description of the space of smooth structures.

Theorem 1.1 ([KS77] 2.3 on page 235). Let𝑀 be a topological manifold without boundary and
dim𝑀 ≠ 4. Then there is a homotopy equivalence

𝜃 : Sm(𝑀) → Sm𝑓 (𝑀) .

There is a variation of this theorem which also covers manifolds with boundary. We introduce
the space of smooth structures Sm(𝑀) and briefly outline a proof of this theorem in Section
3. The space Sm𝑓 (𝑀) on the right is substantially simpler and, in some sense, captures only
the tangential data of a manifold𝑀 . We define spaces of formally smooth and stably formally
smooth structures as

Sm𝑓 (𝑀) ≔ Lift(𝑀 𝔱𝑀−−→ BTop(𝑑) to BO(𝑑)),

Sm𝑠 𝑓 (𝑀) ≔ Lift(𝑀 𝔱𝑀−−→ BTop to BO),

where 𝔱𝑀 : 𝑀 → BTop(𝑑) is a classifying map of the tangent microbundle of 𝑀 which we
also introduce in Section 2. More intuitively, the space of formally smooth structures contains
information about vector bundle structures on the tangent microbundle of𝑀 .

1.1 Motivation and main results

In this thesis our main focus is on the space of smooth structures of manifolds of dimension 4.
The theorem of Kirby and Siebenmann does not hold in dimension 4; nevertheless, Freedman
and Quinn proved a result which shows that there is still a strong connection between spaces of
smooth and formally smooth structures. Let𝑀 be a topological 4-manifold, then the pullback
of 𝔱𝑀 along the collapse map

𝑐 : 𝑀#𝑛𝑆2 × 𝑆2 → 𝑀

is stably isomorphic to 𝔱(𝑀#𝑛𝑆2 × 𝑆2) because the stable tangent microbundle of 𝑆2 × 𝑆2 is
trivial. Therefore, any stably formally smooth structure on𝑀 also induces one on𝑀#𝑛𝑆2 × 𝑆2
by pullback.

Theorem 1.2 ([FQ90] Chapter 8.6). Let𝑀 be a topological 4-manifold. For any stably formally
smooth structure 𝜎 on𝑀 there exists a smooth structure Σ on𝑀#𝑛𝑆2 × 𝑆2 for some 𝑛 ∈ Z≥0, such
that the pullback of 𝜎 along the collapse map

𝑐 : 𝑀#𝑛𝑆2 × 𝑆2 → 𝑀

is isomorphic to the stably formally smooth structure induced by the smooth structure Σ.
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Using action maps, one can construct a commutative triangle

Homeo(𝑀)

Sm(𝑀) Sm𝑓 (𝑀),

𝛼

𝜃

(1.3)

which can potentially help to deduce information about Sm(𝑀) by investigating the map 𝛼 . It
would be a good start if we could understand homotopy groups of Sm𝑓 (𝑀), this is the main
question we attempted to address in this thesis. It is simpler to consider the space of stably
formally smooth structures Sm𝑠 𝑓 (𝑀), Milgram proved the following theorem.

Theorem1.4 ([Mil88]). There is a homotopy equivalence of 7-typesBSTop≤7
𝜃−→ BSO≤7 ×𝐾 (Z/2, 4)

such that the composition

BSO→ BSTop→ BSTop≤7
𝜃−→ BSO≤7 ×𝐾 (Z/2, 4)

pr1−−→ BSO≤7

is 8-connected, and

BSTop→ BSTop≤7
𝜃−→ BSO≤7 ×𝐾 (Z/2, 4)

pr2−−→ 𝐾 (Z/2, 4)

corresponds to the Kirby-Siebenmann class.

Thus, for an oriented manifold𝑀 with Sm+,𝑠 𝑓 (𝑀) ≠ ∅ we have isomorphisms

𝜋𝑘 Sm+,𝑠 𝑓 (𝑀) ≃ 𝐻 3−𝑘 (𝑀,Z/2), for 𝑘 = 0, 1, 2; (1.5)

where "+" means that we are taking orientations into account. Combining this with Quinn’s
result that the stabilization map Top(4)/O(4) → Top/O is 5-connected ([FQ90] Theorem 8.7A)
we can also compute the zeroth homotopy group of the unstable space

𝜋0 Sm+,𝑓 (𝑀) ≃ 𝐻 3(𝑀,Z/2) .

Furthermore, Galvin proved:

Theorem 1.6 ([Gal24]). Let 𝑀 be a connected, orientable, closed, smooth 4-manifold, then the
map

𝜋0Homeo(𝑀#𝑆2 × 𝑆2) 𝛼∗−−→ 𝜋0 Sm+,𝑓 (𝑀#𝑆2 × 𝑆2) ≃ 𝐻 3(𝑀#𝑆2 × 𝑆2,Z/2)

is surjective.

In view of 1.3 we get a lower bound on the size of 𝜋0 Sm(𝑀#𝑆2×𝑆2). Thus, the proposed approach
can potentially also yield interesting elements in the higher homotopy groups of Sm(𝑀).
Unfortunately, we were not able to compute any 𝜋𝑘 Sm𝑓 (𝑀) for 𝑘 > 0, mainly because we do
not know enough about Top(4)/O(4). However, we still establish an analogue of Milgram’s
theorem for BSTop(4) which is the main technical result of this thesis.
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Theorem A (Theorem 6.1). There is a homotopy equivalence of 5-types BSTop(4)≤5
𝜃−→

BSO(4)≤5 × 𝐾 (Z/2, 4) such that the composition

BSO(4) → BSTop(4) → BSTop(4)≤5
𝜃−→ BSO(4)≤5 × 𝐾 (Z/2, 4)

pr1−−→ BSO(4)≤5

is 6-connected, and

BSTop(4) → BSTop(4)≤5
𝜃−→ BSO(4)≤5 × 𝐾 (Z/2, 4)

pr2−−→ 𝐾 (Z/2, 4)

corresponds to the Kirby-Siebenmann class.

As an application of this theorem, we deduce a microbundle analogue of Dold and Whitney’s
classification of vector bundles over 4-dimensional CW complexes ([DW59]).

Theorem B (Theorem 7.2). Let X be a topological 4-manifold or a locally finite 4-dimensional
simplicial complex with no 2-torsion in 𝐻 4(𝑋,Z). Then the maps:

Mic+3 (𝑋 )
(𝑤2,𝑝̃1 )−−−−−→ 𝐻 2(𝑋,Z/2) × 𝐻 4(𝑋,Z),

Mic+4 (𝑋 )
(𝑤2,𝑒,𝑝1,ks)−−−−−−−−−→ 𝐻 2(𝑋,Z/2) × 𝐻 4(𝑋,Z) × 𝐻 4(𝑋,Z) × 𝐻 4(𝑋,Z/2),

Mic+𝑚 (𝑋 )
(𝑤2,𝑤4,𝑝1,ks)−−−−−−−−−−→ 𝐻 2(𝑋,Z/2) × 𝐻 4(𝑋,Z/2) × 𝐻 4(𝑋,Z) × 𝐻 4(𝑋,Z/2), for𝑚 > 4;

are injective and their images consist of the following sets of tuples respectively:

{(𝑎, 𝑐) : 𝜌4𝑐 = 𝑃𝑎},

{(𝑎, 𝑏, 𝑐, 𝑑) : 𝜌4𝑐 = 𝑃𝑎 + 2𝜌4𝑏},

{(𝑎, 𝑏, 𝑐, 𝑑) : 𝜌4𝑐 = 𝑃𝑎 + 𝜄∗𝑏},

where 𝑃 : 𝐻 2(−,Z/2) → 𝐻 4(−,Z/4) denotes the Pontryagin square, 𝜄∗ : 𝐻 4(−,Z/2) →
𝐻 4(−,Z/4) denotes the multiplication by 2, and Mic+𝑚 (𝑋 ) denotes isomorphism classes of
oriented𝑚-microbundles.

As we mentioned, we know a few homotopy groups of Sm+,𝑠 𝑓 (𝑀); therefore, Galvin’s result
on the level of 𝜋0 (Theorem 1.6) leads to the following natural conjecture which we could not
prove or disprove so far.

Conjecture 1.7. Let𝑀 be a connected, orientable, closed, smooth 4-manifold. Then the map

𝜋𝑘 Homeo(𝑀#𝑆2 × 𝑆2) 𝛼∗−−→ 𝜋𝑘 Sm+,𝑠 𝑓 (𝑀#𝑆2 × 𝑆2) ≃ 𝐻 3−𝑘 (𝑀#𝑆2 × 𝑆2,Z/2)

is surjective for 𝑘 = 1, 2.
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1.2 Overview of thesis organization

This thesis is structured in two parts: the first part consists of sections 2 through 5 in which we
gather known results about microbundles, spherical fibrations, smooth structures, obstruction
theory, and characteristic classes which we need to prove our main results. The second part
consists of sections 6 and 7 in which we patiently perform computations using tools introduced
in the first part to prove theorems A and B.
We begin in Section 2 by introducing microbundles and spherical fibrations. We also introduce
their classifying spaces BTop(𝑚), BG(𝑚) which play an important role in the later sections.
Section 3 provides an introduction to smoothing theory which studies smooth structures on a
topological manifold and crucially uses microbundles. In this section, we give a short outline
of Kirby and Siebenmann’s result on the classification of smooth structures and apply it to
compute homotopy groups of Top/O which we need for our main result.
In Section 4 we introduce basic concepts of obstruction theory such as the Postnikov towers
and 𝑘-invariants. These notions are essential for Theorem A. We prove some standard facts
about these objects and, most importantly, Lemma 4.12 which will be our main computational
tool in Section 6.
We continue with a short Section 5 in which we recall definitions of characteristic classes
for vector bundles, microbundles, and spherical fibrations. We recall Wu’s formula, which
determines how the Steenrod algebra acts on the Stiefel-Whitney classes and emphasize that
this formula also holds for spherical fibrations. Moreover, we introduce a characteristic class
specific to microbundles − the Kirby-Siebenmann class, which plays an important role in our
classification of microbundles (Theorem B).
In Section 6 we compute low dimensional homotopy groups of BSO(4), BSTop(4), BSG(4) and
their Postnikov towers through dimension 5. We extensively rely on results from the previous
sections to carry out these computations. In the end, this computation helps us to conclude
Theorem A.
In the final Section 7 we recall the theorem of Dold and Whitney on the classification of
vector bundles and use Theorem A to prove an analogous classification of microbundles −
Theorem B. We avoid using the theorem of Dold and Whitney in our argument and perform a
computation of Moore-Postnikov towers, which is slightly different from Dold and Whitney’s
original argument.
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2 Vector bundles, Microbundles and Spherical Fibrations

In this section, we recall standard information about vector bundles, microbundles, spherical
fibrations, and introduce some common notation which will be used later throughout the thesis.
Smooth manifolds admit tangent vector bundles and microbundles are supposed to model this
notion for topological manifolds. Milnor introduced them in [Mil64] to study smooth structures
on manifolds. Similarly, spherical fibrations model an analogue of normal bundles of Poincaré
duality spaces and are very important for surgery theory.

Definition 2.1. An 𝑚-dimensional microbundle over a space 𝐵 is a triple (𝐸, 𝑖, 𝑝), where
𝑖 : 𝐵 → 𝐸 and 𝑝 : 𝐸 → 𝐵 are maps which satisfy:

1. 𝑝 ◦ 𝑖 = Id𝐵 ,

2. For every 𝑏 ∈ 𝐵 there are neighborhoods 𝑈 ⊂ 𝐵, 𝑉 ⊂ 𝐸 of 𝑏 and 𝑖 (𝑏) such that 𝑖 (𝑈 ) ⊂ 𝑉 ,
𝑝 (𝑉 ) ⊂ 𝑈 , and there is a homeomorphism ℎ : 𝑉 → 𝑈 × R𝑚 which makes the following
diagram commutative

𝑉

𝑈 𝑈

𝑈 × R𝑚 .

𝑝

ℎ

𝑖

×0 𝑝1

The map 𝑖 can be thought of as the zero section. Notice that the local triviality condition is very
similar to the one of vector bundles; however, we only ask for a trivialization in a neighborhood
of the zero section. Isomorphisms of microbundles are also supposed to capture this local
behaviour near the zero section.

Definition 2.2. Let 𝐵
𝑖𝑘−→ 𝐸𝑘

𝑝𝑘−−→ 𝐵, 𝑘 = 1, 2 be two 𝑚-microbundles over the same base
space, then an isomorphism between them is a homeomorphism ℎ : 𝑉1 → 𝑉2 such that 𝑉𝑘 are
neighborhoods of 𝑖𝑘 (𝐵) and the following diagram commutes

𝑉1

𝐵 𝐵

𝑉2.

𝑝1

ℎ

𝑖1

𝑖2 𝑝2

Here are a few examples of microbundles:

Example 2.3. Let 𝑝 : 𝐸 → 𝐵 be a vector bundle and 𝑠 : 𝐵 → 𝐸 the zero section, then

𝐵
𝑠−→ 𝐸

𝑝
−→ 𝐵

is a microbundle.
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Example 2.4. Let M be a topological manifold and Δ : 𝑀 → 𝑀 ×𝑀 is the diagonal, then

𝑀
Δ−→ 𝑀 ×𝑀

pr1−−→ 𝑀

is a microbundle. Indeed, pr1 ◦Δ = Id𝑀 and for any 𝑥 ∈ 𝑀 there is a chart 𝜑 : 𝑈 → R𝑑 which
gives us a local trivialization

𝑈 ×𝑈 (𝑥,𝑦)

𝑈 𝑈

𝑈 × R𝑑 (𝑥, 𝜑 (𝑥) − 𝜑 (𝑦)) .

pr1Δ

×0
pr1

This microbundle is called the tangent microbundle of𝑀 and is denoted by 𝔱𝑀 .

Example 2.5. Let 𝑓 : 𝑋 → 𝑌 be a map between two spaces and 𝜉 = (𝐸, 𝑖, 𝑝) a microbundle over
𝑌 . We define the pullback 𝑓 ∗𝜉 ≔ (𝐸′, 𝑖′, 𝑝′) as usual, then local triviality follows immediately.

The definition of the tangent microbundle is coherent with the notion of the tangent vector
bundle of a smooth manifold.

Proposition 2.6 ([Mil64]). Let𝑀 be a smooth manifold, then the underlying microbundle of the
tangent vector bundle 𝑇𝑀 is isomorphic to 𝔱𝑀 .

It is quite natural to expect that the tangent space of a topological manifold should be a fiber
bundle with the fiber R𝑑 (without the vector space structure). From the first view, the definition
of a microbundle does not seem to be connected in any way to R𝑑 -bundles. However, a deep
result of Kister and Mazur shows that if the base space is good enough then microbundles are
actually the same as R𝑑 -bundles.

Theorem 2.7 ([Kis64]). Let 𝐵 be a locally finite simplicial complex or a topological manifold
and let 𝜉 = (𝐸, 𝑖, 𝑝) be an𝑚-dimensional microbundle over 𝐵. Then 𝐸 contains a unique, up to
isomorphism, fiber bundle over 𝐵 with fiber R𝑚 and structure group Top(𝑚) ≔ Homeo0(R𝑚)
(homeomorphisms preserving the origin).

This fact helps to study microbundles using homotopy theory because fiber bundles are better
understood from this point of view. In the next section we will see how microbundles help to
classify smooth structures on manifolds. Now we also introduce spherical fibrations.

Definition 2.8.

1. A Hurewicz fibration 𝑝 : 𝐸 → 𝐵 is called an𝑚-dimensional spherical fibration if every
fiber is homotopy equivalent to 𝑆𝑚 .

2. An isomorphism between two spherical fibrations over the same base 𝐸𝑘
𝑝𝑘−−→ 𝐵, 𝑘 = 1, 2 is

a fiber homotopy equivalence 𝐸1 → 𝐸2 over 𝐵.
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One easy source of examples of spherical fibrations is complements of the zero section in the
underlying R𝑚-bundles of microbundles (or in vector bundles).
Let Bun𝐺 (𝑋 ) denote the functor which associates isomorphism classes of principal 𝐺-bundles
to a space 𝑋 . Recall the classification theorem for principal 𝐺-bundles.

Theorem 2.9. ([Die08]) There is a natural isomorphism of contravariant functors

[−, BG] → Bun𝐺 (−)

from the homotopy category of CW complexes to the category of sets given by pulling back the
universal principal 𝐺-bundle EG→ BG.

As a corollary of this theorem, we can derive a classification theorem for vector bundles. Let
Vect𝑚 (𝑋 ) denote the functor which associates isomorphism classes of real𝑚-dimensional vector
bundles to a space 𝑋 . Then we have

Corollary 2.10. There is a natural isomorphism of contravariant functorsVect𝑚 (−) and [−, BO(𝑚)]
from the homotopy category of CW complexes to the category of sets.

Proof. Firstly, notice that there are natural inverse bijections

BunGL𝑚 (R) (𝑋 ) → Vect𝑚 (𝑋 )

𝐸 ↦→ 𝐸 ×GL𝑚 (R) R𝑚

where 𝐸 ×GL𝑚 (R) R𝑚 denotes the quotient of 𝐸 × R𝑚 by the equivalence relation

(𝑥,𝑦) ∼ (𝑥 ′, 𝑦′) ⇐⇒ ∃𝑔 ∈ GL𝑚 (R) : (𝑥,𝑦) = (𝑥 ′𝑔,𝑔−1𝑦′),

and
Vect𝑚 (𝑋 ) → BunGL𝑚 (R) (𝑋 )

𝐸 ↦→ Fr(𝐸)

where Fr(𝐸) denotes the frame bundle of 𝐸 (as a set, the total space of the frame bundle is⊔
𝑥∈𝑋 Fr(𝐹𝑥 ), where Fr(𝐹𝑥 ) is the set of frames in the fiber over a point 𝑥 ∈ 𝑋 ). Secondly, there

is a deformation retraction GL𝑚 (R) ≃ O(𝑚); therefore, by Theorem 2.9 we have isomorphisms
of functors

Vect𝑚 (−) ≃ BunGL𝑚 (R) (−) ≃ [−, BGL𝑚 (R)] ≃ [−, BO(𝑚)] .

□

Let Mic𝑚 (𝑋 ) denote the functor which associates isomorphism classes of𝑚-dimensional mi-
crobundles to a space 𝑋 . Then a similar argument combined with Theorem 2.7 implies a
classification theorem for microbundles.

Corollary 2.11. There is a natural isomorphism of contravariant functorsMic𝑚 (−) and [−, BTop(𝑚)]
from the category of topological manifolds or locally finite simplicial complexes and homotopy
classes of continuous maps to the category of sets.
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Remark 2.12. Note that a proof would use Theorem 2.9, which is applicable in this context
because any topological manifold has homotopy type of a CW complex. Moreover, one also has
to check that Mic𝑚 (−) defines a functor on the category of manifolds (or locally finite simplicial
complexes) and homotopy classes of continuous maps. For this, it is enough to show that if
𝑓 , 𝑔 : 𝑋 → 𝑌 are homotopic maps and 𝜉 is a microbundle over 𝑌 then there is an isomorphism
𝑓 ∗𝜉 ≃ 𝑔∗𝜉 . This is indeed true for paracompact spaces by Theorem 3.1 in [Mil64], we will also
call it the microbundle homotopy theorem.

Moreover, Stasheff proved that an analogous classification theorem also holds for spherical fibra-
tions. Let Sph𝑚 (𝑋 ) denote the functor which associates isomorphism classes of𝑚-dimensional
spherical fibrations to a space 𝑋 and G(𝑚) ≔ hAut(𝑆𝑚−1) the monoid of self-homotopy equi-
valences of 𝑆𝑚−1, then we have

Theorem 2.13. ([Sta63]) There is a natural isomorphism of contravariant functors Sph𝑚−1(−)
and [−, BG(𝑚)] from the homotopy category of CW complexes to the category of sets.

Now we introduce more notation which will be used later. We write STop(𝑚) and SG(𝑚) for the
spaces of orientation preserving homeomorphisms of R𝑚 and self-homotopy equivalences of
𝑆𝑚−1 respectively. Write F(𝑚) ≔ hAut∗(𝑆𝑚) and SF(𝑚) ≔ hAut+∗ (𝑆𝑚) for the spaces of pointed
homotopy equivalences of 𝑆𝑚 and its oriented version respectively. Finally, we also introduce
the stable versions of the classifying spaces

BTop ≔ hocolim𝑚 BTop(𝑚)

where the colimit is taken over the maps induced by inclusions Top(𝑚) → Top(𝑚 + 1);

BG ≔ hocolim𝑚 BG(𝑚)

where the colimit is taken over the maps induced by

G(𝑚) → G(𝑚 + 1)

𝑓 ↦→ Σ𝑓 .

We conclude this section by defining the notion of orientability for microbundles and spherical
fibrations. Let 𝜉 = (𝐸, 𝑖, 𝑝) be an𝑚-microbundle over 𝐵, let 𝑏 ∈ 𝐵, and let 𝑉 ⊂ 𝐸 be a locally
trivial neighborhood of 𝑖 (𝑏); then

𝐻𝑚 (𝑝−1(𝑏), 𝑝−1(𝑏)−𝑖 (𝐵);Z) ≃ 𝐻𝑚 (𝑝−1(𝑏)∩𝑉 , (𝑝−1(𝑏)−𝑖 (𝐵))∩𝑉 ;Z) ≃ 𝐻𝑚 (R𝑚,R𝑚−0;Z) ≃ Z.

We say that 𝜉 is orientable if there is a class 𝑢 ∈ 𝐻𝑚 (𝐸, 𝐸 − 𝑖 (𝐵);Z) such that its restriction to
𝐻𝑚 (𝑝−1(𝑏), 𝑝−1(𝑏) − 𝑖 (𝐵);Z) is a generator for all 𝑏 ∈ 𝐵; then 𝑢 is called a Thom class of 𝜉 .
Now let 𝜉 = (𝐸 → 𝐵) be an (𝑚 − 1)-dimensional spherical fibration, 𝑝′ : Cyl(𝑝) → 𝐵 and 𝑏 ∈ 𝐵;
then again

𝐻𝑚 (𝑝′−1(𝑏), 𝑝′−1(𝑏) − 𝑏;Z) ≃ 𝐻𝑚 (𝐷𝑚, 𝐷𝑚 − 0;Z) ≃ Z.

We say that 𝜉 is orientable if there is a class 𝑢 ∈ 𝐻𝑚 (Cyl(𝑝),Cyl(𝑝) − 𝐵;Z) such that its
restriction to 𝐻𝑚 (𝑝′−1(𝑏), 𝑝′−1(𝑏) − 𝑏;Z) is a generator for all 𝑏 ∈ 𝐵; then 𝑢 is called a Thom
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class of 𝜉 .
We also say that a vector bundle, a microbundle, or a spherical fibration is oriented if it is
orientable and we fixed a choice of a Thom class 𝑢. Being orientable is a property, whereas
being oriented is an additional data.

Remark 2.14. The same classification theorems also hold for oriented vector bundles, mi-
crobundles, and spherical fibrations if we also replace the classifying spaces with their oriented
versions. The proof is very similar, but one also has to argue that being orientable is equivalent
to the vanishing of𝑤1 (see Section 5 for more details).
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3 Smoothing theory

In this section, we reconstruct some of the fundamental results in the smoothing theory of
Kirby and Siebenmann. Our exposition mainly follows [KS77].
Kirby and Siebenmann developed a very extensive machinery which allows one to work with
topological manifolds of dimension at least 5. Here is a small, non-exhaustive list of their
striking results: topological transversality theorem, topological isotopy extension theorem,
existence of topological handle decompositions, and topological surgery. Our main goal in this
section is to give an outline of the computation of homotopy groups of Top/O (Theorem 3.18)
which we will use in Section 6. The main ingredient for this computation is the theorem of
Kirby and Siebenmann on the classification of smooth structures on a topological manifold
(3.14), therefore we mainly focus on this theorem.

3.1 Spaces of smooth structures

In this section we mainly will be working with simplicial sets instead of topological spaces as
they provide a more convenient framework. Given a topological manifold𝑀 without boundary
we write Homeo(𝑀) for the simplicial group with a typical 𝑘-simplex given by a commutative
diagram

𝑀 × Δ𝑘 𝑀 × Δ𝑘

Δ𝑘

ℎ

pr2 pr2

with ℎ being a homeomorphism, note that it is the same as the singular simplicial set of the
topological space version of the homeomorphism group Sing(Homeo(𝑀)). Similarly, given a
smooth manifold𝑀 without boundary, we write Diff (𝑀) for the simplicial group with a typical
𝑘-simplex given by a commutative diagram

𝑀 × Δ𝑘 𝑀 × Δ𝑘

Δ𝑘

ℎ

pr2 pr2

withℎ being a diffeomorphism of manifolds with corners. This simplicial group is not isomorphic
to Sing(Diff (𝑀)) but, using Whitney’s approximation theorem, one can show that they are
weakly equivalent.
We will make frequent use of the following bundle theorem of Kirby and Siebenmann.

Theorem 3.1 (Bundle theorem, [KS77] 0.1 on page 217). Let 𝑀 be a topological manifold
with dim𝑀 ≠ 4 ≠ dim 𝜕𝑀 and let Σ be a smooth structure on Δ𝑘 ×𝑀 such that the projection
𝑝2 : (𝑀 × Δ𝑘 )Σ → Δ𝑘 is a smooth submersion onto the standard smooth 𝑘-simplex (with corners,
𝑘 ≥ 0). Then there is a smooth structure 𝛾 on𝑀 and a diffeomorphism ℎ : (𝑀 × Δ𝑘 )Σ → 𝑀𝛾 × Δ𝑘
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such that the following diagram commutes

(𝑀 × Δ𝑘 )Σ 𝑀𝛾 × Δ𝑘

Δ𝑘 .

ℎ

𝑝2 𝑝2

We do not provide a proof, the general idea is to cut 𝑀 into compact pieces for which the
statement follows from Ehresmann’s lemma, and then patch them together. This process of
cutting𝑀 into pieces is in fact quite complicated and uses engulfing. Now we define the space
of smooth structures which will be our main object of interest for the rest of the section.

Definition 3.2. For a topological manifold 𝑀 without boundary we write Sm(𝑀) for the
simplicial set with a typical 𝑘-simplex given by a smooth structure on𝑀 ×Δ𝑘 (which we denote
as (𝑀 × Δ𝑘 )Σ) such that the projection map

pr2 : (𝑀 × Δ𝑘 )Σ → Δ𝑘

is a smooth submersion. Given a map 𝜆 : [𝑘] → [𝑙], we define an induced map

Sm(𝑀)𝑙 → Sm(𝑀)𝑘

by pulling back bundles (𝑀 × Δ𝑙 )Σ → Δ𝑙 along the map 𝜆∗ : Δ𝑘 → Δ𝑙 . These pullbacks are
smooth and the projection

(𝜆∗)∗(𝑀 × Δ𝑙 )Σ → Δ𝑘

is a submersion because the map

Δ𝑘 × (𝑀 × Δ𝑙 )Σ
𝜆∗×pr2−−−−−→ Δ𝑙 × Δ𝑙

is transverse to the diagonal.

Note that 𝜋0 Sm(𝑀) = {Σ : Σ is a smooth structure on M}/∼, where Σ ∼ Σ′ if and only if there
exists a smooth structure Σ on𝑀 × 𝐼 which restricts to Σ and Σ′ on the endpoints and such that
the projection map

pr2 : (𝑀 × 𝐼 )Σ → 𝐼

is a smooth submersion. This equivalence relation is called sliced concordance of smooth
structures (if we relax the condition of the projection onto 𝐼 being a submersion, then the
equivalence relation would be called just concordance). There is also another equivalence
relation on smooth structures which is called isotopy. 𝑀Σ is isotopic to 𝑀Σ′ if there is a
continuous family of homeomorphisms

ℎ𝑡 : 𝑀Σ × 𝐼 → 𝑀Σ′,

such that ℎ0 = Id and ℎ∗1Σ′ = Σ. Isotopy implies diffeomorphism and sliced concordance of
smooth structures; a priori the converse implications do not hold. However, the bundle theorem

13



implies that isotopy follows from sliced concordance in the appropriate dimensions.
The classification theorem 3.14 tells us that the tangential data fully captures information about
smooth structures if the dimension is not 4. We introduce a couple of spaces which "interpolate"
between smooth structures and tangential data.
Let𝑀 be a smoothmanifold without boundary and 𝜉 = (𝐸, 𝑖, 𝑝) amicrobundle over𝑀 , an almost
smooth microbundle structure Σ on 𝜉 is a smooth structure on an open neighborhood 𝑈 of
the zero section 𝑖 (𝑀) such that𝑈Σ

𝑝
−→ 𝑀 is a smooth submersion. We also say that Σ is a smooth

microbundle structure on 𝜉 if, in addition, 𝑖 : 𝑀 → 𝑈Σ is smooth. Two smooth structures Σ,
Σ′ on 𝜉 have the same germ about the zero section if there is an open neighborhood of 𝑖 (𝑀)
on which Σ = Σ′.

Definition 3.3. Let𝑀 be a smooth manifold without boundary and let 𝜉 be a microbundle over
𝑀 , then

1. aSm(𝜉) denotes the simplicial set with a typical 𝑘-simplex given by a germ of almost
smooth microbundle structures on the product microbundle 𝜉 × Δ𝑘 over𝑀 × Δ𝑘 ,

2. Sm(𝜉) denotes the simplicial set with a typical 𝑘-simplex given by a germ of smooth
microbundle structures on the product microbundle 𝜉 × Δ𝑘 over𝑀 × Δ𝑘 .

It is clear that Sm(𝜉) embeds into aSm(𝜉), this embedding is usually a homotopy equivalence,
as we will see later. For a smooth manifold𝑀 we define a map

𝑑 : Sm(𝑀) → aSm(𝔱𝑀)

as follows, for Σ ∈ Sm(𝑀)𝑘 set 𝑑Σ to be the germ of the smooth structure𝑀×Σ on 𝐸 (𝔱𝑀×Δ𝑘 ) =
𝑀 ×𝑀 × Δ𝑘 .

Remark 3.4.

1. The image of 𝑑 does not land in Sm(𝔱𝑀) because Id : 𝑀 → 𝑀Σ is almost never smooth,

2. It is possible to define 𝑑 : Sm(𝑀) → aSm(𝔱𝑀) more generally without assuming smooth-
ness of𝑀 . This is useful for stating all the upcoming theorems in the greatest generality.
Let 𝑀 → 𝑁 be a topological embedding into a smooth manifold 𝑁 with a continuous
retraction 𝑟 : 𝑁 → 𝑀 (all manifolds are ENRs, so such a pair always exists). Consider the
pullback 𝔱 = 𝑟 ∗𝔱𝑀 over 𝑁 , or more explicitly 𝔱 = (𝑀 × 𝑁, 𝑖, pr2) where 𝑖 (𝑦) = (𝑟 (𝑦), 𝑦).
𝑁 is smooth and therefore aSm(𝔱) is well-defined and we have a map

Sm(𝑀) → aSm(𝔱)

Σ ↦→ Σ × 𝑁 .
We define

aSm(𝔱𝑀) ≔ colim𝑈 aSm(𝔱 |𝑈 ),
where the colimit is taken over the directed system {𝑈 : 𝑈 is open in 𝑁 and𝑀 ⊂ 𝑈 },
then we also have the restriction map aSm(𝔱) → aSm(𝔱𝑀). We define

𝑑 : Sm(𝑀) → aSm(𝔱𝑀)
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as the composition of the two maps above. If𝑀 is smooth and 𝑁 = 𝑀 we have the same
𝑑 as we defined before.

Now we prove that in the dimensions for which the bundle theorem is valid, simplicial sets
Sm(𝑀), Sm(𝜉), aSm(𝜉) are Kan complexes and therefore they deserve to be called "spaces".

Proposition 3.5 ([KS77] page 229). Let 𝑀 be a topological manifold without boundary and
dim𝑀 ≠ 4, then Sm(𝑀) is a Kan complex.

Proof. Assume Sm(𝑀) is not empty (otherwise the statement is trivial), let Σ be a smooth
structure on𝑀 . Diff (𝑀Σ) acts freely on the left on Homeo(𝑀), then by 17.1, 18.2 in [May68]
Diff (𝑀Σ) → Homeo(𝑀) → Homeo(𝑀)/Diff (𝑀Σ) is a Kan fibration and Homeo(𝑀)/Diff (𝑀Σ)
is a Kan complex. Moreover, we have an injective map of simplicial sets

Σ∗ : Homeo(𝑀)/Diff (𝑀Σ) → Sm(𝑀)

ℎ ↦→ ℎ(Σ × Δ𝑘 ) .

The bundle theorem shows that Σ∗ is also surjective onto the connected components which it
hits. Now we can vary Σ so the images of Σ∗ cover the whole Sm(𝑀) and we are done. □

Remark 3.6. Sm(𝑀) fails to be a Kan complex in dimension 4. Therefore, it is reasonable to
define the space of smooth structures differently for 4-manifolds. The proof of the previous
proposition suggests that one can define it as the homotopy fiber

fib(
⊔
Σ

BDiff (𝑀Σ) → BHomeo(𝑀)),

where the disjoint union is taken over the diffeomorphism classes of the smooth structures on
𝑀 . We will not use this definition later as none of the results in this section apply to 4-manifolds,
but we include it for the completeness of the exposition.

A similar argument also shows that aSm(𝜉) is a Kan complex.

Proposition 3.7 ([KS77] page 229). Let𝑀 be a smooth manifold without boundary and let 𝜉 be a
microbundle of dimension𝑚 ≠ 4, then aSm(𝜉) is a Kan complex.

Proof. Let (𝐸 (𝜉) × Δ𝑘 )Σ be a 𝑘-simplex in aSm(𝜉). By the Kister-Mazur theorem we can assume
that 𝜉 × Δ𝑘 is a locally trivial R𝑚 bundle since we are working with germs of smooth structures
on 𝐸 (𝜉) × Δ𝑘 . Moreover, by the bundle theorem (𝐸 (𝜉) × Δ𝑘 )Σ → 𝑀 × Δ𝑘 is a locally trivial
smooth fiber bundle. By the homotopy theorem for fiber bundles, there is an isomorphism

(𝐸 (𝜉) × Δ𝑘 )Σ � 𝐸 (𝜉)𝛾 × Δ𝑘

of smooth Diff (R𝑚) fiber bundles over𝑀 × Δ𝑘 where 𝛾 is the restriction of Σ to 𝐸 (𝜉) × 0 (one
has to be careful with corners here, we come back to this issue after finishing the argument).
Now, similarly to Proposition 3.5, we have a Kan fibration

Diff (𝜉 ′) → Homeo(𝜉) → Homeo(𝜉)/Diff (𝜉 ′),
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where 𝜉 ′ is a zero simplex in aSm(𝜉), again there is an injective map Homeo(𝜉)/Diff (𝜉 ′) →
aSm(𝜉) and the argument above shows that it is surjective onto the path components which it
hits. By varying 𝜉 ′ we conclude that aSm(𝜉) is a Kan complex.
We come back to the issue with corners, let 𝑟𝑡 : 𝐼 × Δ𝑘 → Δ𝑘 be a smooth homotopy from
identity to a map which preserves 𝜕Δ𝑘 and maps an open neighborhood of the boundary to the
boundary. One can construct such a homotopy by composing 𝑘 + 1 homotopies, each of which
pushes a neighborhood of a codimension 1 face onto the face itself, radially from the opposite
vertex (this homotopy does not fix 𝜕Δ𝑘 pointwise, but preserves it as a set). Define the map

𝜌 : 𝐼 ×𝑀 × Δ𝑘 → 𝐼 ×𝑀 × Δ𝑘

(𝑡, 𝑥,𝑦) ↦→ (𝑡, 𝑥, 𝑟𝑡 (𝑦)),
then 𝜌∗(𝐼 × (𝐸 (𝜉) ×Δ𝑘 )Σ) gives a smooth structure Γ on 𝐼 ×𝐸 (𝜉) ×Δ𝑘 as a bundle over 𝐼 ×𝑀 ×Δ𝑘

such that
Γ |0×𝑀×Δ𝑘 = (𝐸 (𝜉) × Δ𝑘 )Σ

and Γ |1×𝑀×Δ𝑘 extends to a smooth structure Σ′ on the bundle 𝐸 (𝜉) × R𝑘+1 over𝑀 × R𝑘+1. Now
by the homotopy theorem for fiber bundles

(𝐸 (𝜉) × Δ𝑘 )Σ � (𝐸 (𝜉) × Δ𝑘 )Γ1

and
(𝐸 (𝜉) × Δ𝑘 )Γ1 � 𝐸 (𝜉)𝛾 × Δ𝑘 ,

because we can again apply the homotopy theorem for fiber bundles 𝑘+1 times to (𝐸 (𝜉)×𝐼𝑘+1)Σ′ ,
thus we are done. □

A proof of the fact that Sm(𝜉) is a Kan complex is even easier, one replaces the use of the bundle
theorem with the more common tubular neighborhood theorem; moreover, the argument works
in all dimensions.
The most difficult part of proving the classification theorem 3.14 is the following

Proposition 3.8 ([KS77] 1.4 on page 222). Let𝑀 be a topological manifold without boundary
and dim𝑀 ≠ 4 then the map 𝑑 : Sm(𝑀) → aSm(𝔱𝑀) is a weak equivalence.

We will not provide a full argument but give a short outline of the steps which Kirby and
Siebenmann do:

1. Sm(𝑈 ) and aSm(𝔱𝑈 ) are contravariant functors on open subsets in 𝑀 and they satisfy
the sheaf condition. In other words, the diagrams

Sm(𝑈 ) ∏
𝑖 Sm(𝑈𝑖)

∏
𝑖, 𝑗 Sm(𝑈𝑖 𝑗 ),

aSm(𝔱𝑈 ) ∏
𝑖 aSm(𝔱𝑈𝑖)

∏
𝑖, 𝑗 aSm(𝔱𝑈𝑖 𝑗 )

are equalizers for any open cover {𝑈𝑖}𝑖 of𝑈 . For any subset 𝐴 ⊂ 𝑀 define

Sm𝑀 (𝐴) ≔ colim𝑈 Sm(𝑈 ),
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aSm
𝔱𝑀
(𝐴) ≔ colim𝑈 aSm(𝔱𝑈 ),

where colimits are taken over the directed system {𝑈 : 𝐴 ⊂ 𝑈 and𝑈 is open in𝑀}. Note
that we still have a map

𝑑𝐴 : Sm𝑀 (𝐴) → aSm
𝔱𝑀
(𝐴).

2. Let 𝐵 be a smooth simplex in a chart of𝑀 . Then the restriction maps

Sm𝑀 (𝐵) → Sm𝑀 (∗),

aSm
𝔱𝑀
(𝐵) → aSm

𝔱𝑀
(∗)

are equivalences for any interior point of 𝐵.

3. Let 𝑥 be a point in𝑀 . Then the map

𝑑𝑥 : Sm𝑀 (𝑥) → aSm
𝔱𝑀
(𝑥)

is a weak equivalence.

4. Let 𝐴 ⊂ 𝐵 be a pair of subsets in𝑀 . Then the restriction maps

Sm𝑀 (𝐵) → Sm𝑀 (𝐴),

aSm
𝔱𝑀
(𝐵) → aSm

𝔱𝑀
(𝐴)

are Kan fibrations (this step uses a more general bundle theorem from the Essay 2 in
[KS77]).

5. Given facts from steps 1-4 the proof reduces to the standard machinery of Gromov’s
h-principle. Fix a handle decomposition for𝑀 (all manifolds with dim𝑀 ≠ 4 have one),
one can start with a homotopy equivalence from steps 2 and 3 on the zero handles and
then proceed by induction on handles of higher index using steps 1 and 4.

3.2 Classification of smooth structures

So far we have reduced the question about understanding the homotopy type of the space
Sm(𝑀) to aSm(𝔱𝑀). We make a couple more simplifications of this homotopy type before we
prove the classification theorem 3.14.

Lemma 3.9 ([KS77] 2.1 on page 234). Let 𝑀 be a smooth manifold without boundary and let
𝜉 be a microbundle over 𝑀 with dim 𝜉 ≠ 4, then the inclusion map Sm(𝜉) → aSm(𝜉) is a weak
equivalence.

Proof. Firstly, notice that in this case, both spaces are Kan complexes by Proposition 3.7 and the
paragraph after it, so it is sufficient to prove that for any map of pairs

Σ : (Δ𝑘 , 𝜕Δ𝑘 ) → (aSm(𝜉), Sm(𝜉))
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there is a lift Δ𝑘 → Sm(𝜉) up to homotopy relative to 𝜕Δ𝑘 . The map Σ gives us a smooth
structure Σ × 𝐼 on 𝐸 (𝜉) × Δ𝑘 × 𝐼 such that

𝑝 : 𝐸 (𝜉) × Δ𝑘 × 𝐼 → 𝑀 × Δ𝑘 × 𝐼

is a smooth submersion and

𝑖 : 𝑀 × Δ𝑘 × 𝐼 → 𝐸 (𝜉) × Δ𝑘 × 𝐼

is smooth near 𝑀 × 𝜕Δ𝑘 × 𝐼 . Now we construct another microbundle 𝜁 over 𝑀 × Δ𝑘 × 𝐼 by
slightly changing the map 𝑖 . As we have seen in Proposition 3.7 we can assume that

𝑝 : 𝐸 (𝜉) × Δ𝑘 × 𝐼 → 𝑀 × Δ𝑘 × 𝐼

is a smooth bundle with structure group Diff (R𝑚) by a combination of the Kister-Mazur
and bundle theorems. Now we apply the relative Whitney approximation theorem chart by
chart in the fiber direction to construct another section 𝑖′ of 𝑝 which coincides with 𝑖 on
𝑀 × 𝜕Δ𝑘 × 𝐼 ∪𝑀 × Δ𝑘 × 1 and is smooth on𝑀 × Δ𝑘 × 0. By the relative version of microbundle
homotopy theorem, we have a homeomorphism of microbundles

𝐻 : 𝜁 → 𝜉 × Δ𝑘 × 𝐼

which is equal to the identity over𝑀 × 𝜕Δ𝑘 × 𝐼 ∪𝑀 ×Δ𝑘 × 1. The pushforward smooth structure
𝐻∗(Σ × 𝐼 ) is the same as Σ × 𝐼 over 𝑀 × 𝜕Δ𝑘 × 𝐼 ∪𝑀 × Δ𝑘 × 1 and 𝑖 is smooth on 𝑀 × Δ𝑘 × 0
in this smooth structure. Therefore, 𝐻∗(Σ × 𝐼 ) provides the desired homotopy of Σ into Sm(𝜉)
relative to 𝜕Δ𝑘 . □

Now we introduce a few additional simplicial sets. For two topological spaces 𝑋 and 𝑌 , define

Map(𝑋,𝑌 ) ≔ SingMap𝑡 (𝑋,𝑌 ),

where Map𝑡 (𝑋,𝑌 ) is the space of maps endowed with the compact-open topology. Denote the
universal microbundles over BTop(𝑚) and BO(𝑚) by 𝛾𝑚𝑡 and 𝛾𝑚𝑠 respectively.

Definition 3.10. Let 𝑀 be a smooth manifold, BSm𝑐𝑙𝑠
𝑚 (𝑀) denotes the simplicial set with a

typical 𝑘-simplex given by a smooth microbundle 𝜉 over𝑀 × Δ𝑘 with a smooth microbundle
map 𝜙 : 𝜉 → 𝛾𝑚𝑠 . If𝑀 is a topological manifold we denote by BTop𝑐𝑙𝑠𝑚 (𝑀) a similar simplicial
set of topological microbundles with a classifying map. To avoid set-theoretical issues we ask
microbundles to be subsets of𝑀 × R∞; two simplices are the identified if they coincide on an
open neighborhood of the zero section.

Also, define simplicial sets BSm𝑚 (𝑀) and BTop𝑚 (𝑀) in the same way but omit the classifying
maps.

Lemma 3.11 ([KS77] pages 236-238).
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1. Let 𝑀 be a smooth manifold. Then the simplicial sets BSm𝑐𝑙𝑠
𝑚 (𝑀), BSm𝑚 (𝑀) are Kan

complexes; the forgetful maps

BSm𝑚 (𝑀) ← BSm𝑐𝑙𝑠
𝑚 (𝑀) → Map(𝑀, BO(𝑚))

are weak equivalences; and the forgetful map

BSm𝑚 (𝑀) → BTop𝑚 (𝑀)

is a Kan fibration.

2. Let𝑀 be a topological manifold. Then the simplicial sets BTop𝑐𝑙𝑠𝑚 (𝑀), BTop𝑚 (𝑀) are Kan
complexes; and the forgetful maps

BTop𝑚 (𝑀) ← BTop𝑐𝑙𝑠𝑚 (𝑀) → Map(𝑀, BTop(𝑚))

are weak equivalences.

We omit the proof, but the idea is very similar to Proposition 3.7 combined with the use of the
universal property of bundles 𝛾𝑚𝑡 , 𝛾𝑚𝑠 .
We also write Sm𝑓 (𝑀) for the homotopy fiber fib𝔱𝑀 (Map(𝑀, BO(𝑑)) → Map(𝑀, BTop(𝑑)))
and call it the space of formally smooth structures on 𝑀 (note that it is just the space
of homotopy lifts of the tangent microbundle 𝑀 → BTop(𝑑) to BO(𝑑)). Let 𝑀 be a smooth
manifold, consider the following diagram of forgetful maps and vertical homotopy fibers

Sm(𝔱𝑀) Sm𝑐𝑙𝑠 (𝑀) Sm𝑓 (𝑀)

BSm𝑑 (𝑀) BSm𝑐𝑙𝑠
𝑑
(𝑀) Map(𝑀, BO(𝑑))

BTop𝑑 (𝑀) BTop𝑐𝑙𝑠
𝑑
(𝑀) Map(𝑀, BTop(𝑑)),

where Sm𝑐𝑙𝑠 (𝑀) is defined as the fiber

Sm𝑐𝑙𝑠 (𝑀) ≔ fib𝔱𝑀 (BSm𝑐𝑙𝑠
𝑑
(𝑀) → BTop𝑐𝑙𝑠

𝑑
(𝑀)) .

Then by Lemma 3.11 we have a zig-zag of natural weak equivalences

Sm(𝔱𝑀) ← Sm𝑐𝑙𝑠 (𝑀) → Sm𝑓 (𝑀) (3.12)

and by taking direct limits we also have a zig-zag of weak equivalences for any subset 𝐴 ⊂ 𝑀

Sm𝔱𝑀 (𝐴) ← Sm𝑐𝑙𝑠
𝑀 (𝐴) → Sm𝑓

𝑀
(𝐴) . (3.13)

Now we are finally ready to prove the classification theorem:
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Theorem 3.14 ([KS77] 2.3 on page 235). Let𝑀 be a topological manifold without boundary and
dim𝑀 = 𝑑 ≠ 4, fix a classifying map 𝜑 : 𝔱𝑀 → 𝛾𝑑Top covering 𝑓 : 𝑀 → BTop(𝑑), then there is a
homotopy equivalence

𝜃 : Sm(𝑀) → Sm𝑓 (𝑀)

well-defined up to homotopy and for any subset 𝐴 ⊂ 𝑀 there is a homotopy equivalence

𝜃𝐴 : Sm(𝐴) → Sm𝑓 (𝐴) .

These equivalences are natural: for any subsets 𝐵 ⊂ 𝐴 ⊂ 𝑀 the diagram

Sm(𝐴) Sm𝑓 (𝐴)

Sm(𝐵) Sm𝑓 (𝐵)

𝜃𝐴

𝜃𝐵

commutes up to homotopy.

Proof. Fix an embedding 𝜄 : 𝑀 → 𝑁 of𝑀 into a smoothmanifold𝑁 with a retraction 𝑟 : 𝑁 → 𝑀 .
Extend 𝜑 to 𝜑 : 𝔱 = 𝑟 ∗𝔱𝑀 → 𝛾𝑑𝑡 covering 𝑓 : 𝑁 → BTop(𝑑) via the compositions

𝑟 ∗𝔱𝑀 𝔱𝑀 𝛾𝑑𝑡

𝑁 𝑀 BTop(𝑑),

𝜑

𝑟 𝑓

then for any 𝐴 ⊂ 𝑀 there is a homotopy equivalence

Lift(𝑓 to BO(𝑑) near 𝐴) 𝜄∗−→ Sm𝑓

𝑀
(𝐴),

where in the definition of Sm𝑓 (𝑀) we take the fiber over 𝑓 and Lift(𝑓 to BO(𝑑) near 𝐴) denotes
the colimit of the spaces of lifts over the open neighborhoods of 𝐴. The homotopy inverse
is induced by 𝑟 , both 𝑀 and 𝑁 are ANRs and therefore there is a deformation retraction of a
neighborhood of𝑀 inside 𝑁 onto𝑀 , it induces a homotopy 𝜄∗ ◦ 𝑟 ∗ ≃ Id. Thus, by 3.8, 3.9, 3.11
we have a zig-zag of natural weak equivalences

Sm𝑀 (𝐴)
𝑑−→ aSm

𝔱𝑀
(𝐴) = aSm

𝔱
(𝐴) ← Sm

𝔱
(𝐴) ← Sm𝑐𝑙𝑠

𝔱
(𝐴) →

→ Lift(𝑓 to BO(𝑑) near 𝐴) 𝜄∗−→ Sm𝑓

𝑀
(𝐴),

and we can find the promised 𝜃𝐴 by taking homotopy inverses in these zig-zags. □

Remark 3.15. In the classification theorem, we chose an embedding of 𝑀 into a smooth
manifold. One can show that the resulting maps 𝜃𝐴 do not depend on this embedding up to
homotopy (see [KS77] page 238).
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With a bit more work, it is also possible to prove a version of the classification theorem when a
manifold has boundary and when we fix a prescribed smooth structure on some subset. Let
𝑀 be a topological manifold (possibly with boundary), let 𝐴 be a subset of 𝑀 , and let Σ0 be
a smooth structure on an open neighborhood 𝑈 of 𝐴 in 𝑀 . Recall that the restriction map
Sm(𝑀)

𝑝
−→ Sm𝑀 (𝐴) is a Kan fibration (Proposition 3.8) and write

Sm(𝑀 rel 𝐴; Σ0) ≔ fibΣ0 (Sm(𝑀)
𝑝
−→ Sm𝑀 (𝐴)) .

Also, let
𝑓 : 𝑀 → BTop(𝑑),

𝜕𝑓 : 𝜕𝑀 → BTop(𝑑 − 1)

be classifying maps of the tangent microbundles of𝑀 ,𝜕𝑀 ; and let

𝑓0 : 𝑈 → BO(𝑑)

𝜕𝑓0 : 𝜕𝑈 → BO(𝑑 − 1)

be lifts of 𝑓 , 𝜕𝑓 such that the following diagram

𝜕𝑈 BO(𝑑 − 1)

𝑈 BO(𝑑)

𝜕𝑓0

𝑓0

commutes up to homotopy. Then define the space Lift(𝑓 , 𝜕𝑓 to BO(𝑑), BO(𝑑 − 1)) as the
homotopy pullback

Lift(𝑓 , 𝜕𝑓 to BO(𝑑), BO(𝑑 − 1)) Lift(𝑓 : 𝑀 → BTop(𝑑) to BO(𝑑))

Lift(𝜕𝑓 : 𝜕𝑀 → BTop(𝑑 − 1) to BO(𝑑 − 1)) Lift(𝑔 : 𝜕𝑀 → BTop(𝑑) to BO(𝑑)),
𝑓 ↦→𝑓 |𝜕𝑀

where the bottom horizontal map sends a lift to its postcomposition with the stabilization
map. Also define the space Lift(𝑓 , 𝜕𝑓 to BO(𝑑), BO(𝑑 − 1) near 𝐴) as the colimit of the spaces
Lift(𝑓 , 𝜕𝑓 to BO(𝑑), BO(𝑑 − 1)) taken over open neighborhoods of 𝐴 in𝑀 ; and denote

Lift(𝑓 , 𝜕𝑓 to BO(𝑑), BO(𝑑 − 1) rel 𝑓0, 𝜕𝑓0) ≔

fib𝑓0,𝜕𝑓0 (Lift(𝑓 , 𝜕𝑓 to BO(𝑑), BO(𝑑 − 1)) → Lift(𝑓 , 𝜕𝑓 to BO(𝑑), BO(𝑑 − 1) near 𝐴)) .

Then there is a weak equivalence

Sm(𝑀 rel 𝐴; Σ0) → Lift(𝑓 , 𝜕𝑓 to BO(𝑑), BO(𝑑 − 1) rel 𝑓0, 𝜕𝑓0) (3.16)

if dim𝑀 ≠ 4 ≠ dim 𝜕𝑀 ; where 𝑓 , 𝜕𝑓 classify the tangent microbundles of𝑀, 𝜕𝑀 and 𝑓0, 𝜕𝑓0 are
prescribed by the smooth structure Σ0. For a proof see [KS77] pages 240-244.
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3.3 Homotopy groups of Top/O
Having these very powerful classification theorems at our disposal we can compute homotopy
groups of Top/O. We first prove the following stabilization theorem.

Theorem 3.17. For 0 ≤ 𝑘 ≤ 𝑚 and𝑚 ≥ 6 we have 𝜋𝑘+1(Top(𝑚)/O(𝑚),Top(𝑚−1)/O(𝑚−1)) =
0 and hence the maps Top(𝑚)/O(𝑚) → Top/O are (𝑚 + 2)-connected.

Proof. We apply the relative classification theorem 3.16 to the manifold 𝐼 × 𝐷𝑘 × R𝑛 where
1 + 𝑘 + 𝑛 =𝑚 with 𝐴 = 𝐼 × 𝜕𝐷𝑘 × R𝑛 ∪ 1 × 𝐷𝑘 × R𝑛 , Σ0 given by the standard smooth structure
on 𝐴, and 𝑓0, 𝜕𝑓0 the constant maps. Then 3.16 tells us that

𝜋0 Sm(𝐼 × 𝐷𝑘 × R𝑛 rel 𝐴; Σ0) ≃ 𝜋0 Lift(𝑓 , 𝜕𝑓 to BO(𝑚), BO(𝑚 − 1) rel 𝑓0, 𝜕𝑓0) ≃

≃ [(𝐼 × 𝐷𝑘 , 𝜕(𝐼 × 𝐷𝑘 ), 𝐼 × 𝜕𝐷𝑘 ∪ 1 × 𝐷𝑘 ), (Top(𝑚)/O(𝑚),Top(𝑚 − 1)/O(𝑚 − 1), ∗)] ≃

≃ 𝜋𝑘+1(Top(𝑚)/O(𝑚),Top(𝑚 − 1)/O(𝑚 − 1)) .

By the concordance implies isotopy theorem ([KS77] page 25), the left-hand side is zero, this
completes the proof. □

Let Θ𝑘 denote the group of smooth oriented homotopy 𝑘-spheres up to oriented diffeomorphism
and the operation given by connected sum. We are finally ready the main theorem of this
section which we will use later.

Theorem 3.18 ([KS77] 5.3 on page 247). The homotopy groups of Top/O are given by

𝜋𝑘 Top/O ≃ 0 for 𝑘 = 0, 1, 2, 4,

𝜋3 Top/O ≃ Z/2,

𝜋𝑘 Top/O ≃ Θ𝑘 for 𝑘 > 4.

Proof. For 𝑘 ≤ 4, the proof is significantly more involved, relying on deep results from surgery
theory concerning the classification of homotopy tori; therefore, we omit it. For 𝑘 ≥ 5 we have
𝜋𝑘 Top(𝑘)/O(𝑘) ≃ 𝜋𝑘 Top/O by Theorem 3.17. Moreover, by the relative classification theorem
3.16, there is an isomorphism

𝜋𝑘 Top(𝑘)/O(𝑘) ≃ 𝜋0 Sm(𝑆𝑘 rel 𝐷𝑘
− ; Σ0),

where 𝐷𝑘
− is the bottom hemisphere and Σ0 is the standard smooth structure near it. There is a

forgetful map
𝛼 : 𝜋0 Sm(𝑆𝑘 rel 𝐷𝑘

− ; Σ0) → Θ𝑘

𝑆𝑘Σ ↦→ 𝑆𝑘Σ .

We claim that 𝛼 is a bijection. For surjectivity, let 𝑋 be an oriented homotopy sphere, by the
h-cobordism theorem we can find an orientation preserving homeomorphism ℎ : 𝑋 → 𝐷𝑘 ∪𝜙𝐷𝑘

where 𝜙 : 𝑆𝑘−1 → 𝑆𝑘−1 is a diffeomorphism and the preimage of the bottom hemisphere under
ℎ is a smoothly embedded disc in 𝑋 . Then the pushforward smooth structure on 𝑆𝑘 under ℎ
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gives us the same element in Θ𝑘 as 𝑋 ; moreover, this smooth structure is standard near the
bottom hemisphere, thus 𝛼 is surjective. For injectivity, let Σ, Σ′ be two smooth structures on
𝑆𝑘 which are standard near the bottom hemisphere, and assume that there is an orientation
preserving diffeomorphism 𝑓 : 𝑆𝑘Σ → 𝑆𝑘Σ′ . 𝑓 (𝐷𝑘

−) is a smoothly embedded disc in 𝑆𝑘Σ′ ; therefore,
it is smoothly ambient isotopic to the bottom hemisphere. This isotopy gives us another
diffeomorphism 𝑓 ′ : 𝑆𝑘Σ → 𝑆𝑘Σ′ which is equal to Id on the bottom hemisphere. We produce an
isotopy 𝐻 : 𝑆𝑘 × 𝐼 → 𝑆𝑘 from 𝑓 ′ to Id by putting Alexander isotopy on the top hemisphere. 𝐻
gives us a concordance between Σ and Σ′ relative to the bottom hemisphere, so 𝛼 is injective. □

Remark 3.19. The groups of homotopy spheres Θ𝑘 were studied by Kervaire and Milnor
in [KM63]. A substantial amount of information is known about these groups. For example,
they are finite, which implies that there exist only finitely many non-diffeomorphic smooth
structures on compact topological manifolds of dimension at least 6.

Remark 3.20. Kirby and Siebenmann also developed the same theory for PL manifolds. One
can define spaces BPL(𝑚) which classify PL microbundles and by investigating PL structures
on spheres one can prove that Top/PL ≃ 𝐾 (Z/2, 3). Such a huge difference compared to the
smooth case is caused by the fact that the Poincaré conjecture is true in the PL category in
dimensions at least 5. We will use this homotopy equivalence later because it provides a very
convenient way of defining the Kirby-Siebenmann invariant.
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4 Obstruction theory

In this section, we introduce standard notions of obstruction theory, such as Postnikov towers
and 𝑘-invariants, and prove some basic facts about them. For a more complete treatment of the
topic, one can consult [GJ09] or [Tho66].
Obstruction theory answers the following commonly occurring question:

Question 4.1. Let 𝑝 : 𝐸 → 𝐵 be a Serre fibration, and let 𝑓 : 𝑋 → 𝐵 a map, does 𝑓 lift to 𝐸?

𝐸

𝑋 𝐵

𝑝

𝑓

Under suitable assumptions on the space 𝐵, obstruction theory gives a sequence of "obstructions"
in 𝐻 𝑖+1(𝑋, 𝜋𝑖𝐹 ) where 𝐹 is a fiber of 𝑝 . Each of these obstructions is defined if the previous one
vanishes and a map lifts if all of them vanish. We will come back to this question at the end of
the section.
There are two ways to set up obstruction theory: one by filtering 𝑋 with skeleta, and another
by introducing Moore-Postnikov factorization of 𝑝 ; we take the second approach in this thesis
and start with the notion of Postnikov towers.

Definition 4.2. Let 𝑋 be a connected space. A Postnikov tower of 𝑋 is a sequence of spaces
𝑋≤𝑛 equipped with maps

𝑓𝑛 : 𝑋 → 𝑋≤𝑛

𝑝𝑛 : 𝑋≤𝑛+1 → 𝑋≤𝑛

for all 𝑛 ≥ 0, such that:

1. 𝑓𝑛 induces an isomorphism on 𝜋𝑖 for 𝑖 ≤ 𝑛.

2. 𝜋𝑖𝑋≤𝑛 = 0 for 𝑖 > 𝑛.

3. The diagram
...

𝑋≤𝑛

...

𝑋 𝑋≤0

𝑝0

𝑓𝑛

𝑓0

commutes.
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We also say that a Postnikov tower is principal if all 𝑝𝑛 are principal 𝐾 (𝜋𝑛+1𝑋,𝑛 + 1)-fibrations.

Definition 4.3. Let 𝑋 be a connected space with a principal Postnikov tower {𝑋≤𝑛}. Since all
𝑝𝑛 are principal, 𝑋≤𝑛 admit maps to 𝐾 (𝜋𝑛+1𝑋,𝑛 + 2), which classify these fibrations. This is
equivalent to a collection of cohomology classes 𝑘𝑛 ∈ 𝐻𝑛+2(𝑋≤𝑛, 𝜋𝑛+1𝑋 ). We call these classes
the k-invariants of 𝑋 .

Postnikov towers exist in great generality.

Theorem 4.4 ([Hat02]). Let X be a connected CW complex, then it admits a Postnikov tower
{𝑋≤𝑛}.

Proof. Set 𝑋≤0 ≔ ∗ and define 𝑓0 : 𝑋 → 𝑋≤0 as the unique projection map 𝑋 → ∗. Now let
𝑛 ≥ 1, and let {𝜙𝑖} be a set of generators of 𝜋𝑛+1𝑋 . Attach (𝑛 + 2)-cells to 𝑋 along 𝜙𝑖 and denote
the new space by𝑋𝑛+1. By the cellular approximation theorem, the inclusion𝑋 → 𝑋𝑛+1 induces
an isomorphism on 𝜋𝑖 for 𝑖 < 𝑛+1 and 𝜋𝑛+1𝑋𝑛+1 = 0. Next, attach (𝑛+3)-cells to𝑋𝑛+1 in a similar
way, and denote the resulting space by 𝑋𝑛+2. Then 𝑋 → 𝑋𝑛+2 is an (𝑛 + 1)-equivalence and
𝜋𝑛+1𝑋𝑛+2 = 𝜋𝑛+2𝑋𝑛+2 = 0. Continue by induction and set 𝑋≤𝑛 ≔

⋃
𝑖>𝑛 𝑋

𝑖 , then the inclusion
𝑓𝑛 : 𝑋 → 𝑋≤𝑛 is (𝑛 + 1)-connected and 𝜋𝑖𝑋≤𝑛 = 0 for 𝑖 > 𝑛.
We can find maps 𝑝𝑛 : 𝑋≤𝑛+1 → 𝑋≤𝑛 making the diagrams

𝑋≤𝑛+1

𝑋 𝑋≤𝑛

𝑝𝑛
𝑓𝑛+1

𝑓𝑛

commutative for all 𝑛 ≥ 0 because 𝑋≤𝑛+1 is obtained from 𝑋 by attaching cells of dimension at
least 𝑛 + 3 and 𝜋𝑖𝑋≤𝑛 = 0 for 𝑖 > 𝑛. Therefore, 𝑓𝑛 extends to 𝑋≤𝑛+1 and we denote this extension
by 𝑝𝑛 . □

Furthermore, Postnikov towers behave naturally with respect to maps between spaces.

Theorem 4.5 ([Hat02]). Let 𝑔 : 𝑋 → 𝑌 be a map of connected CW complexes and let {𝑋≤𝑛},
{𝑌≤𝑛} be Postnikov towers of 𝑋,𝑌 . Then there are maps 𝑔𝑛 : 𝑋≤𝑛 → 𝑌≤𝑛 such that the diagrams

𝑋 𝑋≤𝑛 𝑋≤𝑛+1 𝑌≤𝑛+1

𝑌 𝑌≤𝑛 𝑋≤𝑛 𝑌≤𝑛

𝑔 𝑔𝑛

𝑔𝑛+1

𝑔𝑛

commute up to homotopy.

Proof. Firstly, construct another Postnikov tower {𝑋 ′≤𝑛} of 𝑋 in the same way as in Theorem
4.4. There are maps 𝛼𝑛 : 𝑋 ′≤𝑛 → 𝑋≤𝑛 such that the diagrams

𝑋 ′≤𝑛

𝑋 𝑋≤𝑛

𝛼𝑛
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commute, because 𝑋 ′≤𝑛 is obtained from 𝑋 by attaching cells of dimension at least 𝑛 + 2 and
𝜋𝑖𝑋≤𝑛 = 0 for 𝑖 > 𝑛. Moreover, maps 𝛼𝑛 make the diagrams

𝑋 ′≤𝑛+1 𝑋≤𝑛+1

𝑋 ′≤𝑛 𝑋≤𝑛+1

𝛼𝑛+1

𝛼𝑛

commute up to homotopy relative to 𝑋 . A homotopy exists because 𝑋 ′≤𝑛+1 × 𝐼 is obtained from
𝑋 ′≤𝑛+1 × 0 ∪ 𝑋 ′≤𝑛+1 × 1 ∪ 𝑋 × 𝐼 by attaching cells of dimension at least 𝑛 + 3. Therefore, we
have a map of towers {𝑋 ′≤𝑛}

𝛼−→ {𝑋≤𝑛} under 𝑋 . Similarly one constructs a map of towers

{𝑋 ′≤𝑛}
𝛽
−→ {𝑌≤𝑛} under 𝑋 . The map of towers promised in the theorem statement is obtained by

composing a homotopy inverse of 𝛼 with 𝛽 . □

Remark 4.6. Note that in the theorem above, we also proved that a Postnikov tower of a
connected CW complex 𝑋 is unique up to homotopy equivalence of towers.

As we have seen, every CW complex admits a Postnikov tower; however, not every tower can
be refined to a principal one. For this to be true we need an additional assumption on 𝑋 .

Theorem 4.7 ([Hat02]). Let 𝑋 be a connected CW complex such that 𝜋1𝑋 is abelian and the
action of 𝜋1𝑋 on 𝜋𝑛𝑋 is trivial for all 𝑛 > 0 (such spaces are also called simple). Then 𝑋 admits a
Postnikov tower of principal fibrations {𝑋≤𝑛}.

Proof. Start with any Postnikov tower {𝑋≤𝑛} with all 𝑝𝑛 : 𝑋≤𝑛+1 → 𝑋≤𝑛 being fibrations,
any Postnikov tower can be refined to such a tower by replacing all 𝑝𝑛 with fibrations; fibers
of 𝑝𝑛 have homotopy type of 𝐾 (𝜋𝑛𝑋,𝑛) by the long exact sequence of homotopy groups.
Notice that the action of 𝜋1𝑋≤𝑛 on 𝜋𝑖𝑋≤𝑛 can be identified the with action of 𝜋1𝑋 on 𝜋𝑖𝑋 ;
therefore, it is trivial. Consider the cofiber Cone(𝑝𝑛), we claim that it is (𝑛 + 1)-connected and
𝜋𝑛+2 Cone(𝑝𝑛) ≃ 𝜋𝑛+1𝑋 . Since 𝑋≤𝑛+1 → 𝑋≤𝑛 is (𝑛 + 1)-connected, we may assume that Cyl(𝑝𝑛)
is obtained from 𝑋≤𝑛+1 by attaching cells of dimension at least 𝑛 + 2, therefore 𝜋𝑖 Cone(𝑝𝑛) = 0
for 𝑖 < 𝑛 + 2. Consider the following commutative diagram

𝜋𝑛+2(Cyl(𝑝𝑛), 𝑋≤𝑛+1) 𝜋𝑛+2 Cone(𝑝𝑛)

𝐻𝑛+2(Cyl(𝑝𝑛), 𝑋≤𝑛+1) 𝐻𝑛+2 Cone(𝑝𝑛)
ℎ ℎ

with vertical arrows given by the Hurewicz homomorphism and horizontal by the quotient maps.
The right vertical map is an isomorphism by the Hurewicz theorem. The bottom horizontal map
is an isomorphism by excision. The left vertical arrow is an isomorphism by the relative Hurewicz
theorem because 𝐻𝑖 (Cyl(𝑝𝑛), 𝑋≤𝑛+1) = 0 for 𝑖 < 𝑛 + 2 and the action of 𝜋1𝑋≤𝑛+1 is trivial
on 𝜋𝑖 (Cyl(𝑝𝑛), 𝑋≤𝑛+1). Therefore, we have an isomorphism 𝜋𝑛+1𝑋 ≃ 𝜋𝑛+2(Cyl(𝑝𝑛), 𝑋≤𝑛+1) ≃
𝜋𝑛+2 Cone(𝑝𝑛), we also conclude that (Cone(𝑝𝑛))≤𝑛+2 has the homotopy type of𝐾 (𝜋𝑛+1𝑋,𝑛+2).
We claim that the composition

𝑋≤𝑛 → Cone(𝑝𝑛) → Cone(𝑝𝑛)≤𝑛+2
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represents n-th 𝑘-invariant of 𝑋 . Write

𝐹𝑛+1 ≔ fib(𝑋≤𝑛 → Cone(𝑝𝑛) → Cone(𝑝𝑛)≤𝑛+2),

then 𝑋≤𝑛+1 admits a preferred map to 𝐹𝑛+1 given by the preferred null-homotopy of the com-
position

𝑋≤𝑛+1
𝑝𝑛−−→ 𝑋≤𝑛 → Cone(𝑝𝑛).

Consider a map of long exact sequences

𝜋𝑘 (Cyl(𝑝𝑛), 𝑋≤𝑛+1) 𝜋𝑘𝑋≤𝑛+1 𝜋𝑘𝑋≤𝑛 𝜋𝑘−1(Cyl(𝑝𝑛), 𝑋≤𝑛+1)

𝜋𝑘 (Cone(𝑝𝑛)≤𝑛+2) 𝜋𝑘𝐹𝑛+1 𝜋𝑘𝑋≤𝑛 𝜋𝑘−1(Cone(𝑝𝑛)≤𝑛+2).

The five-lemma implies that the map 𝑋≤𝑛+1 → 𝐹𝑛+1 is a weak equivalence. Therefore, we can
replace𝑋≤𝑛+1 with 𝐹𝑛+1 in the tower and now 𝐹𝑛+1 → 𝑋≤𝑛 is a principal𝐾 (𝜋𝑛+1𝑋,𝑛+1)-fibration
because it arises as the following pullback

𝐹𝑛+1 𝑃∗𝐾 (𝜋𝑛+1𝑋,𝑛 + 2)

𝑋≤𝑛 𝐾 (𝜋𝑛+1𝑋,𝑛 + 2),

⌟

where 𝑃∗ denotes the path space. We can do this procedure inductively starting with 𝑝0 to
replace the whole tower with a tower of principal fibrations. □

Note that the construction of 𝑘-invariants from the previous theorem also implies naturality of
𝑘-invariants.

Lemma 4.8. Let 𝑔 : 𝑋 → 𝑌 be a map between simple, connected CW complexes, let {𝑋≤𝑛} and
{𝑌≤𝑛} be principal Postnikov towers of 𝑋 and 𝑌 with maps 𝑔𝑛 : 𝑋≤𝑛 → 𝑌≤𝑛 such that the diagram
of towers commutes up to homotopy, and let

𝑘𝑛,𝑋 : 𝑋≤𝑛 → 𝐾 (𝜋𝑛+1𝑋,𝑛 + 2),

𝑘𝑛,𝑌 : 𝑌≤𝑛 → 𝐾 (𝜋𝑛+1𝑌, 𝑛 + 2)

be the 𝑘-invariants of 𝑋 and 𝑌 . Then the diagram

𝑋≤𝑛 𝐾 (𝜋𝑛+1𝑋,𝑛 + 2)

𝑌≤𝑛 𝐾 (𝜋𝑛+1𝑌, 𝑛 + 2)

𝑘𝑛,𝑋

𝑔𝑛 𝑔∗

𝑘𝑛,𝑌

(4.9)

commutes up to homotopy. Moreover, one can replace 𝑋≤𝑛 , 𝑌≤𝑛 with fib(𝑘𝑛,𝑋 ), fib(𝑘𝑛,𝑌 ); and
𝑔𝑛+1 : 𝑋≤𝑛+1 → 𝑌≤𝑛+1 with the map induced on the horizontal fibers in the Diagram 4.9 without
affecting the homotopy-commutativity of the tower diagram.
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Proof. We have a commutative diagram

𝑋≤𝑛+1 𝑌≤𝑛+1

𝑋≤𝑛 𝑌≤𝑛 .

𝑔𝑛+1

𝑝𝑛 𝑝′𝑛
𝑔𝑛

(4.10)

Therefore, by the functoriality of the cone and Postnikov tower, we have the following homotopy-
commutative diagram

𝑋≤𝑛 Cone(𝑝𝑛) Cone(𝑝𝑛)≤𝑛+2 𝐾 (𝜋𝑛+1𝑋,𝑛 + 2)

𝑌≤𝑛 Cone(𝑝′𝑛) Cone(𝑝′𝑛)≤𝑛+2 𝐾 (𝜋𝑛+1𝑌, 𝑛 + 2) .

𝑔𝑛

≃

𝑔∗

≃

Moreover, the compositions in the top and bottom rows correspond to the 𝑘-invariants 𝑘𝑛,𝑋 and
𝑘𝑛,𝑌 ; thus, Diagram 4.9 commutes up to homotopy. In addition, we have a commutative diagram

𝑋≤𝑛+1 fib(𝑘𝑛,𝑋 ) 𝑋≤𝑛 Cone(𝑝𝑛)

𝑌≤𝑛+1 fib(𝑘𝑛,𝑌 ) 𝑌≤𝑛 Cone(𝑝′𝑛),

𝑟

𝑔𝑛+1 𝑔𝑛

𝑟 ′

where the maps 𝑟 and 𝑟 ′ are given by the preferred null-homotopies of the compositions

𝑋≤𝑛+1
𝑝𝑛−−→ 𝑋≤𝑛 → Cone(𝑝𝑛),

𝑌≤𝑛+1
𝑝′𝑛−−→ 𝑌≤𝑛 → Cone(𝑝′𝑛) .

From Theorem 4.7, we also know that 𝑟 and 𝑟 ′ are homotopy equivalences; hence, we can
replace𝑋≤𝑛+1, 𝑌≤𝑛+1 with fib(𝑘𝑛,𝑋 ), fib(𝑘𝑛,𝑌 ) and 𝑔𝑛+1 with the map induced by the functoriality
of the fiber. □

We will make extensive use of this naturality property of 𝑘-invariants in later computations.
Postnikov towers also have close counterparts −Whitehead towers; we will need them later.

Definition 4.11. Let 𝑋 be a connected space. AWhitehead tower of 𝑋 is a sequence of spaces
𝑋≥𝑛 endowed with maps

𝑓𝑛 : 𝑋≥𝑛 → 𝑋,

𝑝𝑛 : 𝑋≥𝑛+1 → 𝑋≥𝑛

for all 𝑛 ≥ 0, such that:

1. 𝑓𝑛 induces an isomorphism on 𝜋𝑖 for 𝑖 ≥ 𝑛.

2. 𝜋𝑖𝑋≥𝑛 = 0 for 𝑖 < 𝑛.
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3. The following diagram
...

𝑋≥𝑛+1

...

𝑋≥0 𝑋

𝑝0

commutes.
One way to construct a Whitehead tower of a connected CW complex 𝑋 is to start with a
Postnikov tower of 𝑋 and take the homotopy fiber at each stage.
In the next sections, we will need a tool to compute 𝑘-invariants of spaces. The following lemma
will be our main instrument.
Lemma 4.12 ([MT08] Chapter 11). Let 𝑋 be a connected, simple space with a portion of its
Postnikov tower:

𝑋≥𝑛+1 𝑋 𝑋≤𝑛 𝐾 (𝜋𝑛+1𝑋,𝑛 + 2)𝑘

and let𝛾𝑛+1 ∈ 𝐻𝑛+1(𝑋≥𝑛+1, 𝜋𝑛+1𝑋 ) be the fundamental class corresponding to Id ∈ Hom(𝜋𝑛+1𝑋, 𝜋𝑛+1𝑋 )
under the isomorphisms

𝐻𝑛+1(𝑋≥𝑛+1, 𝜋𝑛+1𝑋 ) → Hom(𝐻𝑛+1𝑋≥𝑛+1, 𝜋𝑛+1𝑋 ) → Hom(𝜋𝑛+1𝑋, 𝜋𝑛+1𝑋 ) .

Then the 𝑘-invariant 𝑘 is given by 𝑘 = 𝜏𝛾𝑛+1, where 𝜏 is the transgression in the Serre spectral
sequence of the fiber sequence 𝑋≥𝑛+1 → 𝑋 → 𝑋≤𝑛 with coefficients in 𝜋𝑛+1𝑋 .

Proof. We have the following commutative diagram (where pullback means homotopy pullback)
from the definition of a principal Postnikov tower

𝑋≤𝑛+1 𝑃∗𝐾 (𝜋𝑛+1𝑋,𝑛 + 2)

𝑋 𝑋≤𝑛 𝐾 (𝜋𝑛+1𝑋,𝑛 + 2) .

𝛼

⌟
𝑓𝑛+1

𝑓𝑛 𝑘

By taking homotopy fibers, we can extend it to the following diagram

𝐾 (𝜋𝑛+1𝑋,𝑛 + 1) 𝐾 (𝜋𝑛+1𝑋,𝑛 + 1)

𝑋≥𝑛+1 𝑋≤𝑛+1 𝑃∗𝐾 (𝜋𝑛+1𝑋,𝑛 + 2)

𝑋 𝑋≤𝑛 𝐾 (𝜋𝑛+1𝑋,𝑛 + 2).

𝛽

𝛾

𝛼

𝑓𝑛+1

𝑓𝑛 𝑘
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Then 𝛽 ◦ 𝛾 induces the identity on 𝜋𝑛+1, this implies commutativity of the following diagram

𝐻𝑛+1(𝑋≥𝑛+1, 𝜋𝑛+1𝑋 ) 𝐻𝑛+1(𝐾 (𝜋𝑛+1𝑋,𝑛 + 1), 𝜋𝑛+1𝑋 )

Hom(𝜋𝑛+1𝑋, 𝜋𝑛+1𝑋 ) Hom(𝜋𝑛+1𝑋, 𝜋𝑛+1𝑋 )

(𝛽◦𝛾 )∗

Id

and this in turn means that (𝛽 ◦ 𝛾)∗𝜄𝑛+1 = 𝛾𝑛+1, where 𝜄𝑛+1 ∈ 𝐻𝑛+1(𝐾 (𝜋𝑛+1𝑋,𝑛 + 1), 𝜋𝑛+1𝑋 ) is
the fundamental class. The following map of fiber sequences

𝑋≥𝑛+1 𝑋 𝑋≤𝑛

𝐾 (𝜋𝑛+1𝑋,𝑛 + 1) 𝑃∗𝐾 (𝜋𝑛+1𝑋,𝑛 + 2) 𝐾 (𝜋𝑛+1𝑋,𝑛 + 2)

𝛽◦𝛾

𝑓𝑛

𝛼◦𝑓𝑛+1 𝑘

induces a map between Serre spectral sequences with coefficients in 𝜋𝑛+1𝑋 and by the naturality
of transgression we get

𝜏𝛾𝑛+1 = 𝜏 ((𝛽 ◦ 𝛾)∗𝜄𝑛+1) = 𝑘∗(𝜏𝜄𝑛+1) = 𝑘∗𝜄𝑛+2 = 𝑘,
where 𝜄𝑛+2 ∈ 𝐻𝑛+2(𝐾 (𝜋𝑛+1𝑋,𝑛 + 2), 𝜋𝑛+1𝑋 ) is the fundamental class. The third equality follows
from a direct check that 𝜏𝜄𝑛+1 = 𝜄𝑛+2; therefore, we are done. □

As we have already mentioned, there is a more general version of the Postnikov tower, which is
called the Moore-Postnikov tower; we will need it in Section 7.
Definition 4.13. Let 𝑝 : 𝐸 → 𝐵 be a map between connected spaces. A Moore-Postnikov
tower of 𝑝 is a sequence of spaces MP(𝑝)𝑛 endowed with maps

𝑓𝑛 : 𝐸 → MP(𝑝)𝑛,
𝑝𝑛 : MP(𝑝)𝑛 → 𝐵,

𝑞𝑛 : MP(𝑝)𝑛+1 → MP(𝑝)𝑛
for all 𝑛 ≥ 0, such that:

1. 𝑓𝑛 induces isomorphisms on 𝜋𝑖 for 𝑖 < 𝑛 + 1 and a surjection on 𝜋𝑛+1.

2. 𝑝𝑛 induces isomorphisms on 𝜋𝑖 for 𝑖 > 𝑛 + 1 and an injection on 𝜋𝑛+1.

3. The diagram
...

MP(𝑝)𝑛

...

𝐸 MP(𝑝)0 𝐵

𝑝𝑛

𝑞0

𝑓𝑛

𝑓0 𝑝0
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commutes.

We also say that a Moore-Postnikov tower is principal if all 𝑞𝑛 are principal𝐾 (𝜋𝑛+1 fib(𝑝), 𝑛+1)-
fibrations.

Similar results about existence, naturality, and 𝑘-invariants are also true for Moore-Postnikov
towers, we state some of them without proof and give appropriate references.

Theorem 4.14. Let 𝐹
𝑖−→ 𝐸

𝑝
−→ 𝐵 be a Serre fibration with 𝐵 and 𝐹 simply connected. Then 𝑝

admits a principal Moore-Postnikov tower.

For a proof, see Chapter 3 [Tho66]. Also, note that the condition of 𝑝 being a fibration is not
really a restriction, as any map can be replaced by a fibration. Now we define 𝑘-invariants of
Moore-Postnikov towers and state a similar lemma which will help us to compute them later.

Definition 4.15. Let 𝑝 : 𝐸 → 𝐵 be a map between connected spaces with a principal
Moore-Postnikov tower {MP(𝑝)𝑛}. Since 𝑞𝑛 are principal, MP(𝑝)𝑛 admit classifying maps to
𝐾 (𝜋𝑛+1 fib(𝑝), 𝑛 + 2), which correspond to cohomology classes 𝑘𝑛 ∈ 𝐻𝑛+2(MP(𝑝)𝑛, 𝜋𝑛+1 fib(𝑝)),
we call these classes the k-invariants of 𝑝 .

Lemma 4.16. Let 𝐹 → 𝐸
𝑝
−→ 𝐵 be a Serre fibration with 𝐵 and 𝐹 simply connected. Let

fib(𝑓𝑛) 𝐸 MP(𝑝)𝑛 𝐾 (𝜋𝑛+1 fib(𝑝), 𝑛 + 2)
𝑓𝑛 𝑘

be a portion of a principal Moore-Postnikov tower of 𝑝 , and let 𝛾𝑛+1 ∈ 𝐻𝑛+1(fib(𝑓𝑛), 𝜋𝑛+1 fib(𝑝)) be
the fundamental class corresponding to Id ∈ Hom(𝜋𝑛+1 fib(𝑝), 𝜋𝑛+1 fib(𝑝)) under the isomorphisms

𝐻𝑛+1(fib(𝑓𝑛), 𝜋𝑛+1 fib(𝑝)) → Hom(𝐻𝑛+1 fib(𝑓𝑛), 𝜋𝑛+1 fib(𝑝)) → Hom(𝜋𝑛+1 fib(𝑝), 𝜋𝑛+1 fib(𝑝)).

Then the 𝑘-invariant 𝑘 is given by 𝑘 = 𝜏𝛾𝑛+1, where 𝜏 is the transgression in the Serre spectral
sequence of the fiber sequence fib(𝑓𝑛) → 𝐸 → MP(𝑝)𝑛 with coefficients in 𝜋𝑛+1 fib(𝑝).

For a proof see Chapter 3 [Tho66].
We conclude the section by returning to the Question 4.1. Another very important fact about
Moore-Postnikov towers is that there is a homotopy equivalence

𝐸
≃−→ holim𝑛 MP(𝑝)𝑛,

which implies that to determine whether 𝑓 : 𝑋 → 𝐵 lifts to 𝐸 we can attempt to lift it through
the Moore-Postnikov tower step by step. Once we have a lift

MP(𝑝)𝑛

𝑋 𝐵,

the 𝑘-invariant
𝑋 → MP(𝑝)𝑛 → 𝐾 (𝜋𝑛+1 fib(𝑝), 𝑛 + 2)

defines a cohomology class in 𝑋 and this class vanishes if and only if we can lift 𝑓 further to
MP(𝑝)𝑛+1. If all these obstructions vanish, we can also lift 𝑓 to 𝐸.
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5 Characteristic classes

In this section, we recall information on characteristic classes of vector bundles, microbundles,
and spherical fibrations which will be useful for us later. We show that the Stiefel-Whitney
classes and the Euler class are defined for spherical fibrations and microbundles. We also
state Wu’s formula which describes the action of the Steenrod algebra on the Stiefel-Whitney
classes. In the end, we define the first Pontryagin class and the Kirby-Siebenmann class for
microbundles.

Definition 5.1. A characteristic class for 𝑚-dimensional vector bundles (microbundles,
spherical fibrations) is a natural transformation from Vect𝑚 (−)(Mic𝑚 (−), Sph𝑚 (−)) to𝐻𝑘 (−, 𝐴)
as functors from the homotopy category of CW complexes to the category of sets, where 𝑘 ∈ N
is a natural number and 𝐴 is an abelian group.

By Corollary 2.10 and Yoneda’s lemma, we have

Nat(Vect𝑚 (−), 𝐻𝑘 (−, 𝐴)) ≃ Nat( [−, BO(𝑚)], 𝐻𝑘 (−, 𝐴)) ≃ 𝐻𝑘 (BO(𝑚), 𝐴) .

Thus, it is enough to compute the cohomology of BO(𝑚) to understand all characteristic classes
of𝑚-dimensional vector bundles. A similar statement holds for microbundles and spherical
fibrations with BO(𝑚) replaced by BTop(𝑚) and BG(𝑚) respectively by 2.11,2.13 (the statement
for microbundles holds only if we work with microbundles over a sufficiently nice space for
which the Kister-Mazur theorem holds).
Now we define some standard characteristic classes. Let 𝜉 = (𝐸

𝑝
−→ 𝐵) be a spherical fibration.

We define its Thom space as Th(𝜉) ≔ Cone(𝑝); the Thom isomorphism theorem still holds for
spherical fibrations.

Theorem 5.2. Let 𝜉 = (𝐸
𝑝
−→ 𝐵) be a (𝑚 − 1)-dimensional spherical fibration over a CW complex

𝐵, then there is a Thom class 𝑢 ∈ 𝐻𝑚 (Cyl(𝑝), 𝐸;Z/2) and the composition

𝐻𝑘 (𝐵,Z/2)
𝑝∗

−−→ 𝐻𝑘 (Cyl(𝑝),Z/2) −∪𝑢−−−→ 𝐻𝑚+𝑘 (Cyl(𝑝), 𝐸;Z/2) → 𝐻̃𝑚+𝑘 (Th(𝜉),Z/2),

which we denote by Φ, is an isomorphism for all 𝑘 ≥ 0.
If, in addition, 𝜉 is orientable and 𝑢Z ∈ 𝐻𝑚 (Cyl(𝑝), 𝐸;Z) is an integral Thom class then

ΦZ : 𝐻𝑘 (𝐵,Z)
𝑝∗

−−→ 𝐻𝑘 (Cyl(𝑝),Z) −∪𝑢Z−−−−→ 𝐻𝑚+𝑘 (Cyl(𝑝), 𝐸;Z) → 𝐻̃𝑚+𝑘 (Th(𝜉),Z)

is also an isomorphism for all 𝑘 ≥ 0.

For a proof see Chapter 6 of [LM24]. Using the Thom isomorphism we can define the Stiefel-
Whitney classes. Let 𝐸𝑚 → BG(𝑚) be the universal (𝑚 − 1)-spherical fibration.

Definition 5.3. Let 𝑢 ∈ 𝐻̃𝑑 (Th(𝐸𝑚),Z/2) be the Thom class, define the Stiefel-Whitney classes
as

𝑤𝑘 ≔ Φ−1 Sq𝑘 𝑢 ∈ 𝐻𝑘 (BG(𝑚),Z/2) .
Moreover, we define𝑤𝑘 formicrobundles and vector bundles as pullbacks of𝑤𝑘 ∈ 𝐻𝑘 (BG(𝑚),Z/2)
to 𝐻𝑘 (BTop(𝑚),Z/2) and 𝐻𝑘 (BO(𝑚),Z/2) along the maps induced by the inclusions O(𝑚) →
Top(𝑚) → G(𝑚).
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It is clear that 𝑤𝑘 = 0 for 𝑘 > 𝑚 because Sq𝑘 𝑢 = 0 in this case. It is also known that the
Stiefel-Whitney classes exhaust all the possible Z/2 characteristic classes of vector bundles in
the following sense

Theorem 5.4 (see [MS74]). There is an isomorphism of rings

Z/2[𝑤1,𝑤2, . . . ,𝑤𝑚] → 𝐻 ∗(BO(𝑚),Z/2),

which associates to𝑤𝑘 the corresponding Stiefel-Whitney classes of the universal m-dimensional
vector bundle.

However, microbundles and spherical fibrations have more characteristic classes with Z/2
coefficients than just Stiefel-Whitney classes, as we will see later.
Stiefel-Whitney classes behave well with respect to the Whitney sum of vector bundles. Let 𝜉
and 𝜂 be𝑚-dimensional and 𝑛-dimensional vector bundles over 𝐵. Then we have an equality

𝑤 (𝜉 ⊕ 𝜂) = 𝑤 (𝜉)𝑤 (𝜂) ∈ 𝐻Π (𝐵,Z/2),

where 𝑤 (𝜉) = ∑
𝑘 𝑤𝑘 (𝜉) ∈ 𝐻Π (𝐵,Z/2) is the total Stiefel-Whitney class (the same formula

is also true for fiberwise join of spherical fibrations). This formula follows from Cartan’s
formula for the Steenrod squares and the fact that the Thom class of the Whitney sum 𝑢𝜉⊕𝜂 ∈
𝐻̃𝑚+𝑛 (Th(𝜉 ⊕ 𝜂),Z/2) corresponds to the product of the Thom classes of 𝜉 and 𝜂 via the
isomorphisms

𝐻̃𝑚+𝑛 (Th(𝜉 ⊕ 𝜂),Z/2) ≃ 𝐻̃𝑚+𝑛 (Th(𝜉) ∧Th(𝜂),Z/2) ≃ 𝐻̃𝑚 (Th(𝜉),Z/2) ⊗ 𝐻̃𝑛 (Th(𝜂),Z/2) .

It is also possible to fully determine the action of the Steenrod algebra on the Stiefel-Whitney
classes in 𝐻 ∗(BG(𝑚),Z/2). We introduce the following convention

(
𝑎

𝑏

)
=


𝑎!

𝑏!(𝑎−𝑏 )! if 𝑎 ≥ 𝑏 ≥ 0,
1 if 𝑎 = −1 and 𝑏 = 0,
0 otherwise.

Let 𝜉 be a spherical fibration over a connected CW complex 𝐵, then we have:

Theorem 5.5. (Wu’s formula [Hsi63])

Sq𝑗 𝑤𝑘 (𝜉) =
𝑗∑︁

𝑡=0

(
𝑘 − 𝑗 + 𝑡 − 1

𝑡

)
𝑤 𝑗−𝑡 (𝜉)𝑤𝑘+𝑡 (𝜉)

for all 𝑗, 𝑘 ≥ 0.

Wewill use this formula in sections 6 and 7, so we write out more explicitly a couple of important
cases for us:

Sq1𝑤2 = 𝑤1𝑤2 +𝑤3,

Sq2𝑤4 = 𝑤2𝑤4 +𝑤6.

33



Remark 5.6. A spherical fibration 𝜉 is oriented if and only if𝑤1(𝜉) vanishes. One direction
is straightforward: if 𝜉 is oriented, then the mod 2 Thom class is the reduction of the integral
Thom class, 𝑢Z/2 = 𝜌2𝑢Z, and therefore

𝑤1 = Φ−1(Sq1𝑢Z/2) = Φ−1(Sq1 𝜌2𝑢Z) = Φ−1(0) = 0.

The converse direction is harder, one can argue that the vanishing of𝑤1 is equivalent to 𝜉 being
trivializable over the 1-skeleton of 𝐵 using obstruction theory and then proceed by induction
over skeleta to show the existence of the integral Thom class (similar to the existence of the
mod 2 Thom class).

By the remark above, we know that the universal spherical fibration 𝐸𝑚 → BSG(𝑚) is orientable.
Using this, we can define the Euler class 𝑒 ∈ 𝐻𝑚 (BSG(𝑚),Z).

Definition 5.7. Let 𝑢 ∈ 𝐻̃𝑚 (Th(𝐸𝑚),Z) be the integral Thom class of 𝐸𝑚 , define the Euler class
as

𝑒 ≔ Φ−1𝑢2 ∈ 𝐻𝑚 (BSG(𝑚),Z) .

Moreover, we define 𝑒 for microbundles and vector bundles as pullbacks of 𝑒 ∈ 𝐻𝑚 (BSG(𝑚),Z)
to 𝐻𝑚 (BSTop(𝑚),Z) and 𝐻𝑚 (BSO(𝑚),Z) along the maps induced by the inclusions SO(𝑚) →
STop(𝑚) → SG(𝑚).

The Euler class also behaves well with respect to Whitney sums

𝑒 (𝜉 ⊕ 𝜂) = 𝑒 (𝜉)𝑒 (𝜂) .

Moreover, 𝜌2𝑒 (𝜉) = 𝑤𝑚 (𝜉) for an oriented (𝑚 − 1)-dimensional spherical fibration because

ΦZ/2𝜌2𝑒 = ΦZ/2𝜌2Φ
−1
Z 𝑢

2
Z = 𝑢2Z/2 = Sq𝑚 𝑢Z/2.

With a bit more work one can also define the Pontryagin classes of vector bundles 𝑝𝑘 ∈
𝐻 4𝑘 (BO(𝑚),Z) (see [MS74]), which satisfy the following properties:

1. 𝑝𝑘 (𝜉) = 0 if dim 𝜉 < 2𝑘 ,

2. 𝑝𝑘 (𝜉) = 𝑒 (𝜉)2 if dim 𝜉 = 2𝑘 and 𝜉 is oriented,

3. 𝜌2𝑝𝑘 = 𝑤2
2𝑘 for all 𝑘 ≥ 0,

4. 2𝑝 (𝜉 ⊕ 𝜂) = 2𝑝 (𝜉)𝑝 (𝜂),

5. 𝑝 (𝜉 ⊕ R) = 𝑝 (𝜉),

where 𝑝 (𝜉) = ∑
𝑘 𝑝𝑘 (𝜉) ∈ 𝐻Π (𝐵,Z) is the total Pontryagin class. The definition of the Pontryagin

classes crucially uses vector bundle structure and they cannot be defined for microbundles and
spherical fibrations in general.
The Stiefel-Whitney classes, the Euler class, and the Pontryagin classes give a full description
of the integral cohomology of BO(𝑑), which was computed by Brown in [Bro82]. We state a
couple of cases which we will need later because the general result is rather convoluted:
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𝐻 ∗(BSO(3),Z) ≃ Z[𝛽2𝑤2, 𝑝1]/(2𝛽2𝑤2),

𝐻 ∗(BSO(4),Z) ≃ Z[𝛽2𝑤2, 𝑝1, 𝑒]/(2𝛽2𝑤2),

where 𝛽2 : 𝐻 ∗(−,Z/2) → 𝐻 ∗+1(−,Z) is the Bockstein homomorphism.
Now we define a couple of classes which are specific to microbundles. Using the result of Kirby
and Siebenmann that Top/PL ≃ 𝐾 (Z/2, 3) (3.20) we can define a class named after them.

Definition 5.8. Define the Kirby-Siebenmann class ks ∈ 𝐻 4(BSTop(𝑚),Z/2) as the composition

BSTop(𝑚) → BSTop→ BTop/PL ≃ 𝐾 (Z/2, 4) .

The Kirby-Siebenmann class of a tangent microbundle of a topological manifold is an obstruction
to the existence of a smooth structure. There are many manifolds𝑀 such that ks(𝔱𝑀) ≠ 0; for
example, the famous 𝐸8 manifold.
As we have said, the definition of the Pontryagin classes uses vector bundle structure; however,
the following theorem of Milgram allows us to define 𝑝1 for microbundles.

Theorem5.9 ([Mil88]). There is a homotopy equivalence of 7-typesBSTop≤7
𝜃−→ BSO≤7 ×𝐾 (Z/2, 4)

such that the composition

BSO→ BSTop→ BSTop≤7
𝜃−→ BSO≤7 ×𝐾 (Z/2, 4)

pr1−−→ BSO≤7

is 8-connected, and

BSTop→ BSTop≤7
𝜃−→ BSO≤7 ×𝐾 (Z/2, 4)

pr2−−→ 𝐾 (Z/2, 4)

corresponds to the Kirby-Siebenmann class.

Definition 5.10. The theorem of Milgram implies that the map BSO → BSTop induces an
isomorphism

𝐻 4(BSTop,Z) ≃−→ 𝐻 4(BSO,Z) ≃ Z⟨𝑝1⟩.

Define 𝑝1 ∈ 𝐻 4(BSTop,Z) as the preimage of 𝑝1 ∈ 𝐻 4(BSO,Z) under this isomorphism.
Define 𝑝1 ∈ 𝐻 4(BSTop(𝑚),Z) for 𝑚 > 0 as the pullback of 𝑝1 ∈ 𝐻 4(BSTop,Z) under the
map BSTop(𝑚) → BSTop.
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6 Postnikov tower of BSTop(4)
This section provides computations of the Postnikov towers of the spaces BSTop(4), BSO(4), BSG(4)
through dimension 5. The main result of this section is

Theorem 6.1. There is a homotopy equivalence of 5-types BSTop(4)≤5
𝜃−→ BSO(4)≤5 ×𝐾 (Z/2, 4)

such that the composition

BSO(4) → BSTop(4) → BSTop(4)≤5
𝜃−→ BSO(4)≤5 × 𝐾 (Z/2, 4)

pr1−−→ BSO(4)≤5

is 6-connected, and

BSTop(4) → BSTop(4)≤5
𝜃−→ BSO(4)≤5 × 𝐾 (Z/2, 4)

pr2−−→ 𝐾 (Z/2, 4)

corresponds to the Kirby-Siebenmann class.

The strategy of the proof is as follows: first, we compute homotopy groups of these spaces
and maps between them. Afterward, we patiently apply Lemma 4.12 to deduce information
about the 𝑘-invariants of BSO(4) and BSG(4), and then compare them with those of BSTop(4)
to prove Theorem 6.1.

6.1 Homotopy groups

We begin with a computation of homotopy groups of the aforementioned spaces in low dimen-
sions.
The following lemma is a well-known folklore fact.

Lemma 6.2. SO(4) is homeomorphic to R𝑃3 × 𝑆3.

Proof. IdentifyR𝑃3 with the quotient space of a 3-dimensional ball𝐷3 of radius 𝜋 with boundary
points identified via the antipodal map. We describe a map

𝐷3 → SO(3)

which induces a homeomorphismR𝑃3 � SO(3). We associate to a vector 𝑣 ∈ 𝐷3 a rotation in the
counterclockwise direction by the angle |𝑣 | in the plane orthogonal to 𝑣 (the counterclockwise
direction is well-defined because there is a preferred orientation in the orthogonal complement
of 𝑣 induced by 𝑣 and the standard orientation of R3). It can be seen that this map is continuous
by writing out the formulas explicitly. Moreover, it is surjective by Euler’s rotation theorem
and injectivity fails only at the antipodal points on the boundary of 𝐷3. Therefore, this map
induces a homeomorphism R𝑃3 � SO(3).
Recall that there is a principal SO(3) bundle SO(4) → 𝑆3, we claim that it admits a section.
Indeed, view 𝑆3 as a topological group using unit quaternions, left multiplication by a unit
quaternion defines an element of SO(4). This gives us a section

𝑠 : 𝑆3 → SO(4)
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𝑥 ↦→ (𝑡 ↦→ 𝑥𝑡) .

Therefore, the principal bundle SO(4) → 𝑆3 is isomorphic to the trivial one, this gives us the
desired homeomorphism SO(4) � SO(3) × 𝑆3 � R𝑃3 × 𝑆3. □

Now we proceed to the space G(4). Recall that there are fibrations F(𝑚) → G(𝑚 + 1) → 𝑆𝑚

(Lemma 3.1 in [MM79]), then we have

Lemma 6.3. The fibration F(3) 𝜄−→ G(4) ev−→ 𝑆3 is homeomorphic to the trivial fibration.

Proof. We view 𝑆3 as unit quaternions. This fibration also admits a section given by left
multiplication with a quaternion, but it does not imply triviality because the map G(4) ev−→ 𝑆3 is
not necessarily a fiber bundle. Therefore, we just construct two inverse homeomorphisms:

𝑆3 × F(3) → G(4)

(𝑥, 𝑓 ) ↦→ (𝑡 ↦→ 𝑥 𝑓 (𝑡));

G(4) → 𝑆3 × F(3)

𝑓 ↦→ (𝑓 (1), (𝑡 ↦→ (𝑓 (1))−1 𝑓 (𝑡))).

□

Combining 6.2, 6.3, homotopy equivalence F(3) ≃ (Ω3𝑆3)± Id (path components of the Id and
a reflection), and the work of Toda [Tod63] we can compute homotopy groups of BO(4) and
BG(4). We summarize these computations in the following table:

𝑖 0 1 2 3 4
𝜋𝑖 (O(4)) Z/2 Z/2 0 Z ⊕ Z Z/2 ⊕ Z/2
𝜋𝑖 (G(4)) Z/2 Z/2 Z/2 Z/12 ⊕ Z Z/2 ⊕ Z/2

(6.4)

Remark 6.5. The identifications of the generators of the groups in the table above come from
the splittings 6.2, 6.3. For example

𝜋3 O(4) ≃ 𝜋3(SO(3) × 𝑆3) ≃ 𝜋3R𝑃3 × 𝜋3𝑆3 ≃ Z⟨𝑝⟩ ⊕ Z⟨Id𝑆3⟩,

where 𝑝 : 𝑆3 → R𝑃3 is the quotient map.

We will need information about the maps induced on homotopy groups by the inclusion
SO(4) → SG(4). Note that the maps G(𝑚) → G(𝑚 + 1) factor through F(𝑚) since they are
given by the suspension. We will also need the following results of Haefliger and Toda.

Theorem 6.6 ([Hae66] Remark 7.7). The map G(𝑚) → F(𝑚) is (2𝑚 − 3)-connected.

Theorem 6.7 ([Tod63] Propositions 5.6 and 5.8).

• 𝜋6𝑆3 is isomorphic to Z/12 and we denote the generator of the 4-torsion part by 𝜈 ′.
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• 𝜋7𝑆3 is isomorphic to Z/2 and its generator is given by 𝜈 ′ ◦ Σ4𝜂, where 𝜂 is the Hopf map
𝑆3 → 𝑆2.

Using these facts we can prove:

Lemma 6.8. The maps 𝜋𝑘 (SO(3)) → 𝜋𝑘 (SF(3)), induced by the composition SO(3) → SG(3) →
SF(3) are isomorphisms for 𝑘 = 0, 1, 4 and are surjective for 𝑘 = 3.

Proof. The case 𝑘 = 0 is trivial because all spaces are connected. For 𝑘 = 1, consider the
following commutative diagram of fiber sequences

SO(2) SO(3) 𝑆2

SF(2) SG(3) 𝑆2.

ev

ev

Recall that SF(2) ≃ (Ω2𝑆2)Id; thus, on the 𝜋1 level of the long exact sequences of homotopy
groups we have

Z Z Z/2 0

Z Z 𝜋1 SG(3) 0.

·2
≃

Moreover, the connecting homomorphism

𝜋2𝑆
2 → 𝜋1 SF(2) ≃ 𝜋3𝑆2

Z→ Z

is given by the Whitehead product [Id𝑆2,−] by Theorem 3.2 in [Whi46], and hence it is also
multiplication by 2. Therefore, 𝜋1 SO(3) → 𝜋1 SF(3) is an isomorphism by the discussion above
combined with Theorem 6.6. For 𝑘 = 3, the 𝜋3-portion of the long exact sequences of homotopy
groups has the following form

Z/2 0 Z Z

Z/2 Z/2 𝜋3 SG(3) Z,

≃

𝛼 ≃ (6.9)

where the map Z/2→ Z/2 in the bottom row is

𝜋4𝑆
2 [Id𝑆2 ,−]−−−−−−→ 𝜋5𝑆

2

by Theorem 3.2 in [Whi46]. This Whitehead product is trivial because it lies in the kernel of the
suspension homomorphism

Σ : 𝜋5𝑆2 → 𝜋6𝑆
3
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and this suspension homomorphism is injective. Indeed, 𝜋5𝑆2 is generated by 𝜂 ◦Σ𝜂 ◦Σ2𝜂, which
is stably nontrivial by Proposition 5 in Chapter 17 of [MT08]. Therefore, 𝜋3 SG(3) ≃ Z/2 × Z
and the composition 𝜋3 SO(3) → 𝜋3 SG(3) → 𝜋3 SF(3) identifies with Z

𝛼−→ Z/2 × Z
𝛽
−→ Z/12,

since 𝜋3 SF(3) ≃ 𝜋3((Ω3𝑆3)Id) ≃ Z/12. Therefore, we have to prove that 𝛽 ◦ 𝛼 is surjective. 𝛽 is
surjective by Theorem 6.6; thus, 𝛽 ((0, 1)) = 1 (up to an automorphism of Z/12). Moreover, by
the commutativity of (6.9), 𝛼 (1) = (𝑥, 1) for some 𝑥 ∈ Z/2. Now we consider all possible cases:

1. 𝛼 (1) = (0, 1), 𝛽 ((1, 0)) = 0,

2. 𝛼 (1) = (1, 1), 𝛽 ((1, 0)) = 0,

3. 𝛼 (1) = (0, 1), 𝛽 ((1, 0)) = 6,

4. 𝛼 (1) = (1, 1), 𝛽 ((1, 0)) = 6.

In cases (1)-(3) (𝛽 ◦ 𝛼) (1) = 1 and in the case (4) (𝛽 ◦ 𝛼) (1) = 7 and therefore the map is
surjective.
Now we turn to the case 𝑘 = 4. Consider the following commutative diagram, where the vertical
maps are given by precomposition with the suspensions of the Hopf fibration (note that they
are homomorphisms, however, this is not important for the argument)

𝜋3 SO(3) 𝜋3 SF(3) 𝜋3((Ω3𝑆3)Id) 𝜋6𝑆
3

𝜋4 SO(3) 𝜋4 SF(3) 𝜋4((Ω3𝑆3)Id) 𝜋7𝑆
3.

−◦Σ𝜂

≃

−◦Σ𝜂

≃

−◦Σ𝜂 −◦Σ4𝜂

≃ ≃

By Theorem 6.7 𝜋7𝑆3 ≃ Z/2 and the rightmost vertical map is surjective. Therefore, by the
surjectivity of 𝜋3 SO(3) → 𝜋3 SF(3) and the commutativity of the diagram, the map 𝜋4 SO(3) →
𝜋4 SF(3) is also surjective and hence bijective because both groups are Z/2. □

Proposition 6.10. The maps 𝜋𝑘 SO(4) → 𝜋𝑘 SG(4), induced by the inclusion are isomorphisms
for 𝑘 = 0, 1, 4 and are surjective for 𝑘 = 3.

Proof. Consider the following commutative diagram of fiber sequences

SO(3) SO(4) 𝑆3

SF(3) SG(4) 𝑆3.

The statement follows from the corresponding portions of the long exact sequence of homotopy
groups, Lemma 6.8, and the splittings 6.2, 6.3. Moreover, for 𝑘 = 3, the corresponding portion of
the long exact sequences has the following form

0 Z Z ⊕ Z Z 0

0 Z/12 Z/12 ⊕ Z Z 0.

(6.11)
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Notice that the diagram of splittings given by left multiplication by a unit quaternion is com-
mutative

SO(4) SG(4)

𝑆3.

𝑠 𝑠′

This implies that the middle vertical arrow in (6.11) is the direct sum of the vertical arrows on
the sides. □

We now know the relevant homotopy groups of O(4) and G(4), as well as the maps between
them induced by the inclusion. This will help us to compute homotopy groups of Top(4), since
the map O(4) → G(4) factors through Top(4). To proceed with this computation, we need the
following theorem of Quinn (compare with 3.17).

Theorem 6.12 ([FQ90] Theorem 8.7A). The stabilization map Top(4)/O(4) → Top/𝑂 is 5-
connected.

Using it we first deduce

Lemma 6.13. The stabilization maps G(4)/O(4) → G/O and G(4)/Top(4) → G/Top are
5-connected.

Proof. From Table 6.4 and Proposition 6.10, we deduce that 𝜋𝑖 G(4)/O(4) is isomorphic to
0, 0,Z/2, 0,Z for 𝑖 from 0 to 4. The corresponding stable groups are the same by the computations
of the stable J-homomorphism O→ G (see, for example, [Ran02] Remark 9.22) and in addition
𝜋5 G/O = 0. The map O(4) → O is 3-connected and G(4) → G is also 3-connected because
it is a composition of a 5-connected map G(4) → F(4) (Theorem 6.6) and a 3-connected map
F(4) → G. Now compare the long exact sequences of homotopy groups of the fiber sequences

O(4) G(4) G(4)/O(4)

O G G/O .J

From this we deduce that the maps

𝜋𝑘 G(4)/O(4) → 𝜋𝑘 G/O

are isomorphisms for 𝑘 = 0, 1, 2, 3 and are surjective for 𝑘 = 5. We are only left to consider the
case 𝑘 = 4, we have the following exact sequences

0 Z Z ⊕ Z Z/12 ⊕ Z 0

0 Z Z Z/24 0,

1↦→(12,0) (1,0) ↦→(1,0)
(0,1) ↦→(0,1)
(1,0) ↦→2
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where the middle vertical map
𝜋3 O(4) → 𝜋3 O

Z ⊕ Z→ Z

is (𝑎, 𝑏) ↦→ 2𝑎 + 𝑏 by (2.1), (2.2) in [Tam57]. Therefore, by commutativity, the left vertical arrow
(𝜋4 G(4)/O(4) → 𝜋4 G/O) is an isomorphism and thus G(4)/O(4) → G/O is 5-connected. The
statement about G(4)/Top(4) → G/Top follows from the long exact sequences of the fiber
sequences

Top(4)/O(4) G(4)/O(4) G(4)/Top(4)

Top/O G/O G/Top

by applying the 5-lemma together with the first part of this lemma and the theorem of Quinn.
□

Remark 6.14. Note that the stable groups are known: 𝜋3 G/O ≃ 𝜋3 G/Top ≃ 0, 𝜋4 G/O ≃ Z,
𝜋4 G/Top ≃ Z. Moreover, the map

Z ≃ 𝜋4 G/O→ 𝜋4 G/Top ≃ Z

is the multiplication by 2 (see, for example, [KS77] page 318). Lemma 6.13 implies the same
statements for the unstable spaces.

The following theorem should be known to experts. The author learned it fromManuel Krannich
and Alexander Kupers; however, it does not seem like it has been written up anywhere.

Theorem 6.15. Homotopy groups 𝜋𝑘 Top(4) for 𝑘 < 5 are given by the following table

𝑖 0 1 2 3 4
𝜋𝑖 (Top(4)) Z/2 Z/2 0 Z ⊕ Z ⊕ Z/2 Z/2 ⊕ Z/2

Proof. The statement for 𝑘 = 0, 1, 2 follows from Theorem 3.18 and Theorem 6.12. For 𝑘 = 4,
consider the fiber sequence

O(4) → Top(4) → Top(4)/O(4),

the 𝜋4-portion of the induced long exact sequence of homotopy groups can be identified with

Z/2 ⊕ Z/2→ 𝜋4(Top(4)) → 0.

Moreover, by Proposition 6.10, the composition 𝜋4 O(4) → 𝜋4 Top(4) → 𝜋4 G(4) is an isomorph-
ism, therefore 𝜋4 O(4) → 𝜋4 Top(4) has to be an isomorphism as well. For 𝑘 = 3, examining the
long exact sequence leads to the following extension problem

0→ Z ⊕ Z→ 𝜋3 Top(4) → Z/2→ 0.
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Kirby and Siebenmann show that an analogous sequence in the stable case splits ([KS77] page
318), we make a similar argument to show that it also splits in the unstable case. Assume that
𝜋3 Top(4) is isomorphic to Z⊕Z to arrive at a contradiction. Consider the commutative diagram
with horizontal rows being fiber sequences

O(4) G(4) G(4)/O(4)

Top(4) G(4) G(4)/Top(4),

by Table (6.4) and Remark 6.14 we get the following diagram of homotopy groups in dimensions
3 and 4 with exact rows

0 Z Z ⊕ Z Z/12 ⊕ Z 0

0 Z 𝜋3 Top(4) Z/12 ⊕ Z 0.

1↦→(12,0)

·2

(1,0) ↦→(1,0)
(0,1) ↦→(0,1)

𝛾 Id
𝛼 𝛽

(6.16)

We assumed that 𝜋3 Top(4) ≃ Z ⊕ Z, then 𝛼 (1) = (𝑎, 𝑏), 𝛾 ((1, 0)) = (𝑎1, 𝑏1) for some integers
𝑎, 𝑏, 𝑎1, 𝑏1. By commutativity of the left square we get (𝑎, 𝑏) = (6𝑎1, 6𝑏1), but by commutativity
of the right square and exactness of the bottom row (0, 0) = 𝛽 ((𝑎, 𝑏)) = 6𝛽 (𝑎1, 𝑏1) = (6, 0).
Therefore, we get a contradiction and 𝜋3 Top(4) is isomorphic to Z ⊕ Z ⊕ Z/2. □

Remark 6.17. Also, notice that the generator of 2-torsion in 𝜋3 Top(4) has to be mapped to a
nontrivial element in 𝜋3 G(4) (in fact, it has to be (6, 0)) by the exactness of the bottom row in
(6.16). Indeed, if it was mapped to a trivial element, then it would be the only element in the
image of the map 𝛼 : Z→ 𝜋3 Top(4) ≃ Z ⊕ Z ⊕ Z/2, which contradicts injectivity of 𝛼 .

We now know homotopy groups of Top(4) and we are almost ready to start the computation
of the 𝑘-invariants, but first, we need to introduce one more space which we call BTSG(4)
following Milgram’s notation in [Mil88] for the stable case.

Lemma 6.18. The 3-type BSG(4)≤3 is homotopy equivalent to 𝐾 (Z/2, 2) × 𝐾 (Z/2, 3).

Proof. We only need to prove that the first 𝑘-invariant 𝑘1 of BSG(4) vanishes. Consider its
Postnikov tower

BSG(4)≤3

BSG(4)≥3 BSG(4) 𝐾 (Z/2, 2) 𝐾 (Z/2, 4) .𝑤2 𝑘1

Where𝑤2 denotes the second Stiefel-Whitney class. To show that the first map in the Postnikov
tower is given by 𝑤2, it suffices to see that there are spherical fibrations with nontrivial 𝑤2.
By Lemma 4.12, 𝑘1 is equal to the transgression of the fundamental class in the Serre spectral
sequence of the fiber sequence

BSG(4)≥3 BSG(4) 𝐾 (Z/2, 2) .
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To compute this transgression, we can use the Serre exact sequence of the same spectral sequence:
𝐻 3(BSG(4),Z/2) 𝐻 3(BSG(4)≥3,Z/2) 𝐻 4(𝐾 (Z/2, 2),Z/2) 𝐻 4(BSG(4),Z/2).𝜏

There is an isomorphism
𝐻 4(𝐾 (Z/2, 2),Z/2) ≃ Z/2⟨𝛾22⟩,

where 𝛾2 is the generator of 𝐻 2(𝐾 (Z/2, 2),Z/2); therefore, the map 𝐻 4(𝐾 (Z/2, 2),Z/2) →
𝐻 4(BSG(4),Z/2) sends 𝛾22 to 𝑤2

2 . There are spherical fibrations with 𝑤2
2 ≠ 0, thus the map is

nontrivial and consequently 𝜏 = 0. Therefore 𝑘1 = 0. □

By Lemma 6.18, 𝐻 3(BSG(4),Z/2) is isomorphic to Z/2 ⊕ Z/2 with one of the generators given
by 𝑤3 because there are spherical fibrations with nontrivial 𝑤3. Also, 𝐻 3(BSTop(4),Z/2) is
isomorphic to Z/2 with the generator given by 𝑤3 because the map BSO(4) → BSTop(4) is
3-connected and there are microbundles with nontrivial𝑤3. Denote the generator of the kernel
of the map

𝐻 3(BSG(4),Z/2) → 𝐻 3(BSTop(4),Z/2)

by 𝜆. Define BTSG(4) to be the homotopy fiber of the map

𝜆 : BSG(4) → 𝐾 (Z/2, 3).

Then the composition
BSTop(4) → BSG(4) 𝜆−→ 𝐾 (Z/2, 3)

is null-homotopic by the definition of 𝜆. This tells us that we have an induced map BSTop(4) →
BTSG(4) (there are exactly two different maps up to homotopy since 𝐻 2(BSTop(4),Z/2) = Z/2,
the latter argument does not depend on which one we pick).
We claim that 𝜆 pairs nontrivially with the generator of 𝜋3 BSG(4). Indeed, this follows from
the fact that 𝜆 has to have a component coming from the generator 𝛾3 ∈ 𝐻 3(𝐾 (Z/2, 3),Z/2)
under the composition

BSG(4) → BSG(4)≤3 ≃ 𝐾 (Z/2, 2) × 𝐾 (Z/2, 3)

because otherwise 𝜆 would be equal to Sq𝑤2 = 𝑤3 + 𝑤1𝑤2 = 𝑤3 by Wu’s formula; and the
latter maps nontrivially to BSTop(4). Then a computation with the long exact sequences of
homotopy groups shows that BTSG(4) has the same homotopy groups as BSG(4) except for
𝜋3 BTSG(4) = 0; and BSTop(4) → BTSG(4) induces the same maps on homotopy groups as
BSTop(4) → BSG(4). We collect the computations we have done in the following table

𝑖 0 1 2 3 4 5
𝜋𝑖 (BSO(3)) 0 0 Z/2 0 Z Z/2
𝜋𝑖 (BSO(4)) 0 0 Z/2 0 Z ⊕ Z Z/2 ⊕ Z/2
𝜋𝑖 (BSTop(4)) 0 0 Z/2 0 Z ⊕ Z ⊕ Z/2 Z/2 ⊕ Z/2
𝜋𝑖 (BSG(4)) 0 0 Z/2 Z/2 Z/12 ⊕ Z Z/2 ⊕ Z/2
𝜋𝑖 (BTSG(4)) 0 0 Z/2 0 Z/12 ⊕ Z Z/2 ⊕ Z/2

(6.19)
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Remark 6.20. We also already know all the maps in this table; mainly from Remark 6.5,
Theorem 6.15, and Proposition 6.10. Namely, the maps on 𝜋2 are the identity. The maps on 𝜋4
are given by the following matrices

𝜋4 BSO(3) → 𝜋4 BSO(4)
(
1
0

)
𝜋4 BSO(4) → 𝜋4 BSTop(4) ©­«

1 0
0 1
0 0

ª®¬
𝜋4 BSTop(4) → 𝜋4 BSG(4)

(
1 0 6
0 1 0

)
𝜋4 BSG(4) → 𝜋4 BTSG(4)

(
1 0
0 1

)
The map 𝜋5 BSO(3) → 𝜋5 BSO(4) is the inclusion of the first summand and the other maps on
𝜋5 are the identity.

6.2 k-invariants

After finishing the computation of all the relevant homotopy groups we can proceed to the
computation of 𝑘-invariants. We begin with BSO(3) (a similar computation for this space is
performed in [AW14]; however, our method is slightly different). From (6.19), we conclude that
the first two stages of the Postnikov tower of BSO(3) have the following form:

BSO(3)≤4 𝐾 (Z/2, 6)

BSO(3) 𝐾 (Z/2, 2) 𝐾 (Z, 5) .

𝑘2

𝑤2 𝑘1

To compute the first 𝑘-invariant, we apply Lemma 4.12; thus, we need to understand the image
of the transgression of the fundamental class in the spectral sequence for the fiber sequence

BSO(3)≥4 BSO(3) 𝐾 (Z/2, 2) .𝑤2

In order to do this, we look at the corresponding portion of the Serre exact sequence

𝐻 4(BSO(3),Z) 𝐻 4(BSO(3)≥4,Z) 𝐻 5(𝐾 (Z/2, 2),Z) 𝐻 5(BSO(3),Z) .𝜏

There are isomorphisms (see Appendix A for more details):

𝐻 5(𝐾 (Z/2, 2),Z) ≃ Z/4⟨𝛽4𝑃𝛾2⟩,

𝐻 5(BSO(3),Z) = 0.
Therefore, 𝜏 maps a generator of 𝐻 4(BSO(3)≥4,Z) ≃ Z to a generator of Z/4⟨𝛽4𝑃𝛾2⟩, so 𝑘1 =
±𝛽4𝑃𝛾2. To proceed with the second 𝑘-invariant, we first need to compute 𝐻 6(BSO(3)≤4,Z/2).
For this, we consider the Serre spectral sequence of the fiber sequence

BSO(3)≤4 𝐾 (Z/2, 2) 𝐾 (Z, 5)±𝛽4𝑃𝛾2
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with coefficients in Z/2.
For convenience we also copy tables with cohomology groups of the relevant Eilenberg-Maclane
spaces from the Appendix A.

𝐻 𝑖 (𝐾 (Z, 𝑛),Z/2) 𝑖 = 3 4 5 6 7 8
𝑛 = 5 0 0 ⟨𝜌2𝜄5⟩ 0 ⟨Sq2 𝜌2𝜄5⟩ ⟨Sq3 𝜌2𝜄5⟩

𝐻 𝑖 (𝐾 (Z/2, 𝑛),Z/2) 𝑖 = 3 4 5 6 7 8
𝑛 = 2 ⟨Sq1 𝛾2⟩ ⟨𝛾22⟩ ⟨𝛾2 Sq1 𝛾2, Sq2 Sq1 𝛾2⟩ ⟨𝛾32 , (Sq1 𝛾2)2⟩ ⟨𝛾2 Sq2 Sq1 𝛾2, ⟨𝛾42 , 𝛾2(Sq1 𝛾2)2,

𝛾22 Sq1 𝛾2⟩ Sq1 𝛾2 Sq2 Sq1 𝛾2⟩

6 𝛾 ′32 , (Sq1 𝛾 ′2)2, 𝑡 0

5 𝛾 ′2 Sq1 𝛾 ′2 0 0

4 𝛾 ′22 0 0 0

3 Sq1 𝛾 ′2 0 0 0 0

2 𝛾 ′2 0 0 0 0 𝛾 ′2𝜌2𝜄5

1 0 0 0 0 0 0 0

0 Z/2 0 0 0 0 𝜌2𝜄5 0 Sq2 𝜌2𝜄5

0 1 2 3 4 5 6 7
(6.21)

𝐻𝑝 (𝐾 (Z, 5), 𝐻𝑞 (BSO(3)≤4,Z/2)) =⇒ 𝐻𝑝+𝑞 (𝐾 (Z/2, 2),Z/2).

Since the coefficients are Z/2, we only write generators of groups in the spectral sequence for
brevity. From convergence, multiplicativity, and naturality we get

𝐻 2(BSO(3)≤4,Z/2) = Z/2⟨𝛾 ′2⟩,

𝐻 3(BSO(3)≤4,Z/2) = Z/2⟨Sq1 𝛾 ′2⟩,
𝐻 4(BSO(3)≤4,Z/2) = Z/2⟨𝛾 ′22 ⟩.

Where 𝛾 ′2 is the image of 𝛾2 ∈ 𝐻 2(𝐾 (Z/2, 2),Z/2). We claim that the edge homomorphisms

𝐻 5(𝐾 (Z, 5),Z/2) → 𝐻 5(𝐾 (Z/2, 2),Z/2), (6.22)
𝐻 7(𝐾 (Z, 5),Z/2) → 𝐻 7(𝐾 (Z/2, 2),Z/2), (6.23)
𝐻 7(𝐾 (Z/2, 2),Z/2) → 𝐻 7(BSO(3)≤4,Z/2) (6.24)
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are nontrivial. For (6.22) we have to compute 𝜌2𝛽4𝑃𝛾2, consider the Bockstein exact sequence
𝐻 5(𝐾 (Z/2, 2),Z) 𝐻 5(𝐾 (Z/2, 2),Z) 𝐻 5(𝐾 (Z/2, 2),Z/2) 𝐻 6(𝐾 (Z/2, 2),Z)

Z/4⟨𝛽4𝑃𝛾2⟩ Z/4⟨𝛽4𝑃𝛾2⟩ Z/2⟨𝛾2 Sq1 𝛾2, Sq2 Sq1 𝛾2⟩ Z/2

·2 𝜌2 𝛽2

·2

and compute
Sq1(𝛾2 Sq1 𝛾2) = (Sq1 𝛾2)2 ≠ 0,

Sq1 Sq2 Sq1 𝛾2 = Sq3 Sq1 𝛾2 = (Sq1 𝛾2)2 ≠ 0,

hence
𝛽2(𝛾2 Sq1 𝛾2 + Sq2 Sq1 𝛾2) = 0,

𝜌2𝛽4𝑃𝛾2 = 𝛾2 Sq1 𝛾2 + Sq2 Sq1 𝛾2 ≠ 0.

To show 6.23, we have to compute Sq2 𝜌2𝛽4𝑃𝛾2, so we write

Sq2(𝛾2 Sq1 𝛾2 + Sq2 Sq1 𝛾2) = Sq2(𝛾2 Sq1 𝛾2) + Sq2 Sq2 Sq1 𝛾2 =

= Sq2 𝛾2 Sq1 𝛾2 + 𝛾2 Sq2 Sq1 𝛾2 = 𝛾22 Sq1 𝛾2 + 𝛾2 Sq2 Sq1 𝛾2 ≠ 0.

For 6.24 consider the diagram

BSO(3)≤4

BSO(3) 𝐾 (Z/2, 2),𝑤2

by naturality and Wu’s formula Sq1𝑤2 = 𝑤1𝑤2 +𝑤3 = 𝑤3 (𝑤1 vanishes on BSO(3)), we deduce
that 𝛾 ′22 Sq1 𝛾 ′2 has to be nontrivial in 𝐻 7(BSO(3)≤4,Z/2). Similarly, 𝐻 5(BSO(3)≤4,Z/2) has to
be generated by 𝛾 ′2 Sq1 𝛾 ′2.
From the computation of edge homomorphisms and convergence we know that 𝐸5,2 has to be
killed by a class in 𝐸0,6, denote this class with 𝑡 .

Remark 6.25. Note that the class 𝑡 is not defined uniquely, we will fix it later by forcing it to
satisfy a certain property.

We conclude that
𝐻 6(BSO(3)≤4,Z/2) ≃ Z/2⟨𝛾 ′32 , (Sq1 𝛾 ′2)2, 𝑡⟩;

hence, we are finally ready to compute the second 𝑘-invariant of BSO(3). By Lemma 4.12, it
is equal to the transgression of the fundamental class in the following Serre exact sequence

𝐻 5(BSO(3)≤4,Z/2) 𝐻 5(BSO(3),Z/2) 𝐻 5(BSO(3)≥5,Z/2) 𝐻 6(BSO(3)≤4,Z/2) 𝐻 6(BSO(3),Z/2)

Z/2⟨𝛾 ′2 Sq1 𝛾 ′2⟩ Z/2⟨𝑤2𝑤3⟩ Z/2⟨𝛾5⟩ Z/2⟨𝛾 ′32 , (Sq1 𝛾 ′2)2, 𝑡⟩ Z/2⟨𝑤3
2,𝑤

2
3⟩.

𝜏

0
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As we have already noted 𝛾 ′2, Sq1 𝛾 ′2 are mapped to𝑤2,𝑤3 respectively. Thus, by exactness, the
map

𝜏 : Z/2⟨𝛾5⟩ → Z/2⟨𝛾 ′32 , (Sq1 𝛾 ′2)2, 𝑡⟩
is injective, therefore 𝜏𝛾5 is a nontrivial class in 𝐻 6(BSO(3)≤4,Z/2). We have enough freedom
to define class 𝑡 with the relation 𝑡 = 𝜏𝛾5 (image of 𝜏 has to have a 𝑡 component by the Serre
exact sequence above), this property defines the class 𝑡 uniquely. To sum up, we have proven

Theorem 6.26. The Postnikov tower of BSO(3) through dimension 5 has the following form

BSO(3)≤4 𝐾 (Z/2, 6)

BSO(3) 𝐾 (Z/2, 2) 𝐾 (Z, 5),

𝑘2

𝑤2 𝑘1

where 𝑘1 = ±𝛽4𝑃𝛾2 ∈ 𝐻 5(𝐾 (Z/2, 2),Z), 𝑘2 = 𝑡 ∈ Z/2⟨𝛾 ′32 , (Sq1 𝛾 ′2)2, 𝑡⟩ ≃ 𝐻 6(BSO(3)≤4,Z) and
the class 𝑡 is uniquely defined by the property 𝑘2 = 𝑡 .

Remark 6.27. This result is somewhat unsatisfactory since the class 𝑡 does not have a geometric
meaning. Potentially one could classify 3-bundles over 5-complexes if one understood how to
properly interpret this class 𝑡 geometrically.

The computation we performed quickly bootstraps to the computations of the first 𝑘-invariants
of BSO(4), BSTop(4), and BTSG(4) by the naturality of 𝑘-invariants. For this consider a com-
mutative diagram of Postnikov towers

BSO(3) 𝐾 (Z/2, 2) 𝐾 (Z, 5)

BSO(4) 𝐾 (Z/2, 2) 𝐾 (Z ⊕ Z, 5)

BSTop(4) 𝐾 (Z/2, 2) 𝐾 (Z ⊕ Z ⊕ Z/2, 5)

BTSG(4) 𝐾 (Z/2, 2) 𝐾 (Z/12 ⊕ Z, 5).

𝑘1,BSO(3)

≃
𝑘1,BSO(4)

≃
𝑘1,BSTop(4)

≃
𝑘1,BTSG(4)

By Lemma 4.8 the whole diagram is commutative up to homotopy. Also, by Remark 6.20 we
know all vertical maps in the middle and the right columns. Putting these facts together we
deduce that

𝑘1,BSO(4) = (±𝛽4𝑃𝛾2, 0),
𝑘1,BSTop(4) = (±𝛽4𝑃𝛾2, 0, 0),
𝑘1,BTSG(4) = (±𝜌12𝛽4𝑃𝛾2, 0) .

To compute the second 𝑘-invariants, we need to understand the sixth cohomology groups
of 4-truncations of these spaces with coefficients in Z/2, thus we turn our attention to this
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problem.
From the computation of the first 𝑘-invariants we have the following identification of the
4-truncations (recall Lemma 4.8):

BSO(4)≤4 = BSO(3)≤4 × 𝐾 (Z, 4),
BSTop(4)≤4 = BSO(4)≤4 × 𝐾 (Z/2, 4),

BTSG(4)≤4 = 𝐹 × 𝐾 (Z, 4),
(6.28)

where 𝐹 = fib(𝐾 (Z/2, 2)
𝜌12𝛽4𝑃𝛾2−−−−−−−→ 𝐾 (Z/12, 5)). Therefore, we obtain the following commutative

diagram of Postnikov towers (also by Lemma 4.8):

BSO(3) BSO(3)≤4 BSO(3)≤4 𝐾 (Z/2, 2) 𝐾 (Z, 5)

BSO(4) BSO(4)≤4 BSO(3)≤4 × 𝐾 (Z, 4) 𝐾 (Z/2, 2) 𝐾 (Z ⊕ Z, 5)

BSTop(4) BSTop(4)≤4 BSO(4)≤4 × 𝐾 (Z/2, 4) 𝐾 (Z/2, 2) 𝐾 (Z ⊕ Z ⊕ Z/2, 5)

BTSG(4) BTSG(4)≤4 𝐹 × 𝐾 (Z, 4) 𝐾 (Z/2, 2) 𝐾 (Z/12 ⊕ Z, 5),

=

=

=

=

(6.29)
where the maps in the middle column are induced by the maps in the right part of the diagram
by the functoriality of the homotopy fiber. Using the Künneth formula, we can compute ranks
of the mod 2 cohomology of these 4-truncations. Furthermore, we will also describe generators
of these groups in more geometric terms using naturality. We still need to compute cohomology
groups of 𝐹 first. To do this, we apply Serre spectral sequence to the fiber sequence

𝐹 𝐾 (Z/2, 2) 𝐾 (Z/12, 5) .𝜌12𝛽4𝑃𝛾2

We copy a table of the relevant cohomology groups of Eilenberg-Maclane spaces from Appendix
A and provide this spectral sequence, followed by an explanation of how to fill it.

𝐻 𝑖 (𝐾 (Z/2, 𝑛),Z/2) 𝑖 = 3 4 5 6 7
𝑛 = 2 ⟨Sq1 𝛾2⟩ ⟨𝛾22⟩ ⟨𝛾2 Sq1 𝛾2, Sq2 Sq1 𝛾2⟩ ⟨𝛾32 , (Sq1 𝛾2)2⟩ ⟨𝛾2 Sq2 Sq1 𝛾2,

𝛾22 Sq1 𝛾2⟩
𝐻 𝑖 (𝐾 (Z/12, 𝑛),Z/2) 𝑖 = 3 4 5 6 7

𝑛 = 5 0 0 ⟨𝛾5⟩ ⟨𝜁5⟩ ⟨Sq2 𝛾5⟩
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6 𝛾 ′32 , (Sq1 𝛾 ′2)2, 𝑡 0

5 𝛾 ′2 Sq1 𝛾 ′2, 𝑘 0 0

4 𝛾 ′22 0 0 0

3 Sq1 𝛾 ′2 0 0 0 0

2 𝛾 ′2 0 0 0 0 𝛾 ′2𝛾5

1 0 0 0 0 0 0 0

0 Z/2 0 0 0 0 𝛾5 𝜁5 Sq2 𝛾5

0 1 2 3 4 5 6 7
(6.30)

𝐻𝑝 (𝐾 (Z/12, 5), 𝐻𝑞 (𝐹,Z/2)) =⇒ 𝐻𝑝+𝑞 (𝐾 (Z/2, 2),Z/2) .

As in the case of BSO(3)≤4, we conclude that

𝐻 2(𝐹,Z/2) = Z/2⟨𝛾 ′2⟩,

𝐻 3(𝐹,Z/2) = Z/2⟨Sq1 𝛾 ′2⟩,

𝐻 4(𝐹,Z/2) = Z/2⟨𝛾 ′22 ⟩.

Furthermore, we have a commutative diagram

𝐹

BSO(3) 𝐾 (Z/2, 2),

𝛼

𝑤2

where 𝛼 is given by the composition

BSO(3) → BTSG(4) → BTSG(4)≤4 = 𝐹 × 𝐾 (Z, 4)
pr1−−→ 𝐹 .

By naturality and Wu’s formula we again deduce that 𝛾 ′2 Sq1 𝛾 ′2, 𝛾 ′32 , (Sq1 𝛾 ′2)2, and 𝛾 ′22 Sq1 𝛾 ′2 are
nontrivial in 𝐻 ∗(𝐹,Z/2). Furthermore, the same computation as for BSO(3)≤4 shows that the
edge homomorphisms

𝐻 5(𝐾 (Z/12, 5),Z/2) → 𝐻 5(𝐾 (Z/2, 2),Z/2),
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𝐻 7(𝐾 (Z/12, 5),Z/2) → 𝐻 7(𝐾 (Z/2, 2),Z/2),

𝐻 7(𝐾 (Z/2, 2),Z/2) → 𝐻 7(𝐹,Z/2)

are nontrivial. Thus, from convergence, we conclude that there have to be classes 𝑘 ∈ 𝐸0,5,
𝑡 ∈ 𝐸0,6 which will kill groups 𝐸6,0, 𝐸5,2 respectively.

Remark 6.31. Notice that there is a map of spectral sequences from 6.30 to 6.21, an examination
of this map shows that the homomorphism

𝐻 6(𝐹,Z/2) → 𝐻 6(BSO(3)≤4,Z/2)

is an isomorphism. From now on we identify the class 𝑡 ∈ 𝐻 6(𝐹,Z/2) with the pullback of the
class 𝑡 ∈ 𝐻 6(BSO(3)≤4,Z/2) along this isomorphism.

Now by applying the Künneth formula to the splittings 6.28 we derive the following table

𝑖 = 1 2 3
𝐻 𝑖 (BSO(4)≤4,Z/2) 0 Z/2⟨𝛾 ′2⟩ Z/2⟨Sq1 𝛾 ′2⟩
𝐻 𝑖 (BSTop(4)≤4,Z/2) 0 Z/2⟨𝛾 ′2⟩ Z/2⟨Sq1 𝛾 ′2⟩
𝐻 𝑖 (BTSG(4)≤4,Z/2) 0 Z/2⟨𝛾 ′2⟩ Z/2⟨Sq1 𝛾 ′2⟩

𝑖 = 4 5 6
𝐻 𝑖 (BSO(4)≤4,Z/2) Z/2⟨𝛾 ′22 , 𝜌2𝜄′4⟩ Z/2⟨𝛾 ′2 Sq1 𝛾 ′2⟩ Z/2⟨𝛾 ′32 , (Sq1 𝛾 ′2)2, 𝛾 ′2𝜌2𝜄′4,

Sq2 𝜌2𝜄′4, 𝑡⟩
𝐻 𝑖 (BSTop(4)≤4,Z/2) Z/2⟨𝛾 ′22 , 𝜌2𝜄′4, 𝛾 ′4⟩ Z/2⟨𝛾 ′2 Sq1 𝛾 ′2, Sq1 𝛾 ′4⟩ Z/2⟨𝛾 ′32 , (Sq1 𝛾 ′2)2, 𝛾 ′2𝜌2𝜄′4,

Sq2 𝜌2𝜄′4, 𝛾 ′2𝛾 ′4, Sq2 𝛾 ′4, 𝑡⟩
𝐻 𝑖 (BTSG(4)≤4,Z/2) Z/2⟨𝛾 ′22 , 𝜌2𝜄′4⟩ Z/2⟨𝛾 ′2 Sq1 𝛾 ′2, 𝑘⟩ Z/2⟨𝛾 ′32 , (Sq1 𝛾 ′2)2, 𝛾 ′2𝜌2𝜄′4,

Sq2 𝜌2𝜄′4, 𝑡⟩

Where the listed generators come from the following groups under the Künneth formula:

𝛾 ′2 ∈ 𝐻 2(BSO(3)≤4,Z/2),
𝜌2𝜄4 ∈ 𝐻 4(𝐾 (Z, 4),Z/2),
𝛾4 ∈ 𝐻 4(𝐾 (Z/2, 4),Z/2) .

Remark 6.32. The idea is that the second 𝑘-invariant is an element in𝐻 6(BSTop(4),Z/2⊕Z/2),
so it is given by a pair of classes in 𝐻 6(BSTop(4),Z/2) each of which we will show to be a linear
combination of 𝑎𝛾 ′2𝜌2𝜄′4 + 𝑡 and 𝛾 ′2𝜌2𝜄′4 + Sq2 𝜌2𝜄′4, for some 𝑎 ∈ Z/2. It is important that these
classes appear in BSTop(4)≤4 by pulling them back along the projection

BSTop(4)≤4 = BSO(4)≤4 × 𝐾 (Z/2, 4)
pr1−−→ BSO(4)≤4

and this will tell us that the second 𝑘-invariant of BSTop(4) is the same as that of BSO(4).

We know the induced maps between these cohomology groups up to degree 4 because we
know behavior of the maps in the middle column of Diagram 6.29. Specifically, generators with
the same names are mapped to each other, except for the class 𝑡 , which we will discuss soon.
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For this, we first identify to which classes all these generators correspond in their geometric
counterparts BSO(4), BSTop(4), BTSG(4).
Firstly, we already know that 𝛾 ′2 and Sq1 𝛾 ′2 are mapped to𝑤2,𝑤3 in BTSG(4), BSTop(4), BSO(4).
Denote the fundamental class of𝐾 (Z, 4) in BSO(4)≤4 = BSO(3)≤4×𝐾 (Z, 4) by 𝜄′4 ∈ 𝐻 4(BSO(4)≤4,Z).
Then we claim that it is mapped to 𝑒 in BSO(4). For this consider the following composition

𝑆4 BSO(4) BSO(3)≤4 × 𝐾 (Z, 4)

𝐾 (Z, 4),

𝜉

pr2 (6.33)

where 𝜉 corresponds to a generator of 𝜋4 BSO(3), we know that the whole composition has to be
to a linear combination 𝑎𝑝1(𝜉) + 𝑏𝑒 (𝜉) for some 𝑎, 𝑏 ∈ Z. On the other hand in 𝜋4 we know that
the map has to be Z 0−→ Z, this means that it is trivial on 𝐻 4(−,Z) and thus 𝑎𝑝1(𝜉) + 𝑏𝑒 (𝜉) = 0.
Moreover, we know that 𝑝1(𝜉) = ±4 and 𝑒 (𝜉) = 0 (see, for example, [Mil56]), hence 𝑎 = 0. Now
we consider the same composition but with 𝜉 representing the generator of the second infinite
cyclic summand of 𝜋4 BSO(4), namely the one given by the section from Lemma 6.2. Then by the
similar reasoning𝐻 4(𝐾 (Z, 4),Z) → 𝐻 4(𝑆4,Z) is the identity and 𝑒 (𝜉) = 1 by [Mil56]. Therefore,
𝑏 = 1 and 𝜄′4 is mapped to 𝑒 . This also implies that 𝜄′4 ∈ 𝐻 4(BSO(4)≤4 × 𝐾 (Z/2, 4),Z) is mapped
to 𝑒 ∈ 𝐻 4(BSTop(4),Z) and 𝜌2𝜄′4 ∈ 𝐻 4(𝐹 × 𝐾 (Z, 4),Z/2) is mapped to𝑤4 ∈ 𝐻 4(BTSG(4),Z/2)
because the maps

𝐻 4(BSTop(4),Z) → 𝐻 4(BSO(4),Z),

𝐻 4(BTSG(4),Z/2) → 𝐻 4(BSO(4),Z/2)

are isomorphisms. Indeed, this follows from the fact that the same maps are isomorphisms on
4-truncations (6.28) by the Künneth formula.
Finally, we claim that𝛾 ′4 ∈ 𝐻 4(BSO(4)≤4×𝐾 (Z/2, 4),Z/2) is mapped to ks ∈ 𝐻 4(BSTop(4),Z/2).
For this consider the composition

𝑆4 BSTop(4) BSO(4)≤4 × 𝐾 (Z/2, 4),

𝐾 (Z/2, 4)

𝜉

pr2

where 𝜉 corresponds to the 2 torsion class in 𝜋4 BSTop(4). We know that the composition
corresponds to a Z/2 linear combination 𝑎𝑤2

2 (𝜉) + 𝑏𝑤4(𝜉) + 𝑐 ks(𝜉), it is an isomorphism
in 𝐻 4(−,Z/2), and ks(𝜉) = 1. We also know that 𝛾 ′4 maps to zero in 𝐻 4 BSO(4)≤4 and to
𝑎𝑤2

2 + 𝑏𝑤4 ∈ 𝐻 4 BSO(4) by the commutativity of

BSO(4) BSO(4)≤4

BSTop(4) BSO(4)≤4 × 𝐾 (Z/2, 4) 𝐾 (Z/2, 4)

≃∗

pr2
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and because ks maps to 0 in BSO(4) by the definition of the Kirby-Siebenmann class. Therefore,
𝑎 = 𝑏 = 0 and 𝑐 = 1.
Now we deal with the class 𝑡 . Recall that it was defined as the second nontrivial 𝑘-invariant
of BSO(3) and it appears in 𝐻 6(BSO(4)≤4,Z/2), 𝐻 6(BSTop(4)≤4,Z/2) by pulling back from
𝐻 6(BSO(3)≤4,Z/2) along the projections

BSO(4)≤4 = BSO(3)≤4 × 𝐾 (Z, 4)
pr1−−→ BSO(3)≤4,

BSTop(4)≤4 = BSO(4)≤4 × 𝐾 (Z/2, 4)
pr1−−→ BSO(4)≤4,

and in BTSG(4)≤4 via the isomorphism from Remark 6.31

𝐻 6(𝐹,Z/2) ≃−→ 𝐻 6(BSO(3)≤4,Z/2).

The induced map

𝐻 6(𝐹 × 𝐾 (Z, 4),Z/2) → 𝐻 6(BSO(3)≤4 × 𝐾 (Z, 4),Z/2)

is an isomorphism because𝐻 6(𝐹 ) ≃−→ 𝐻 6(BSO(3)≤4) is an isomorphism and the classes𝛾 ′2𝜌2𝜄′4, Sq2 𝜌2𝜄′4
are mapped to the same classes by the discussion above. Therefore, the class 𝑡 is also mapped to
the same class via this map. Lastly, we will prove that 𝑡 is also mapped to 𝑡 under the map

𝐻 6(𝐹 × 𝐾 (Z, 4),Z/2) → 𝐻 6(BSO(4)≤4 × 𝐾 (Z/2, 4),Z/2).

We already know that it can only be mapped to a linear combination 𝑡 + 𝑎 Sq2 𝛾 ′4 + 𝑏𝛾 ′2𝛾 ′4 and we
will show that 𝑎 = 𝑏 = 0. Begin with

Lemma 6.34. The map 𝐾 (Z/2, 𝑛) ·6−→ 𝐾 (Z/12, 𝑛) induces zero on 𝐻𝑛 (−,Z/2) and 𝐻𝑛+2(−,Z/2)
for 𝑛 > 3.

Proof. Consider the Serre spectral sequence of the fibration

𝐾 (Z/2, 𝑛) ·6−→ 𝐾 (Z/12, 𝑛) → 𝐾 (Z/6, 𝑛)
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𝑛 + 2 Sq2 𝛾𝑛

𝑛 + 1 Sq1 𝛾𝑛

𝑛 𝛾𝑛 0

... 0 0 0

1 0 0 0 0

0 0 0 0 𝛾𝑛 Sq1 𝛾𝑛 Sq2 𝛾𝑛 Sq3 𝛾𝑛

0 1 . . . 𝑛 𝑛 + 1 𝑛 + 2 𝑛 + 3

𝐻𝑝 (𝐾 (Z/6, 𝑛), 𝐻𝑞 (𝐾 (Z/2, 𝑛),Z/2)) =⇒ 𝐻𝑝+𝑞 (𝐾 (Z/12, 𝑛),Z/2).

The statement follows by an inspection of the edge homomorphisms. □

Firstly, we consider the following maps of fiber sequences

BSO(3)≤4 𝐾 (Z/2, 2) 𝐾 (Z, 5)

BSO(3)≤4 × 𝐾 (Z/2, 4) 𝐾 (Z/2, 2) 𝐾 (Z ⊕ Z/2, 5)

𝐹 𝐾 (Z/2, 2) 𝐾 (Z/12, 5),

±𝛽4𝑃𝛾2

pr1 ≃
(±𝛽4𝑃𝛾2,0)

≃

pr1

𝑓

±𝜌12𝛽4𝑃𝛾2

(6.35)

where 𝑓 is given by 𝑓 (𝑥,𝑦) = 𝑥 + 6𝑦 (recall Remark 6.20). These fiber sequences induce Serre
spectral sequences and maps between them:
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6 𝛾 ′32 , (Sq1 𝛾 ′2)2, 𝑡 0

5 𝛾 ′2 Sq1 𝛾 ′2 0 0

4 𝛾 ′22 0 0 0

3 Sq1 𝛾 ′2 0 0 0 0

2 𝛾 ′2 0 0 0 0 𝛾 ′2𝜌2𝜄5

1 0 0 0 0 0 0

0 Z/2 0 0 0 0 𝜌2𝜄5

0 1 2 3 4 5

A1: 𝐻𝑝 (𝐾 (Z, 5), 𝐻𝑞 (BSO(3)≤4,Z/2))
=⇒ 𝐻𝑝+𝑞 (𝐾 (Z/2, 2),Z/2).

6 𝛾 ′32 , (Sq1 𝛾 ′2)2, 𝑡,
Sq2 𝛾 ′4, 𝛾 ′2𝛾 ′4

0

5 𝛾 ′2 Sq1 𝛾 ′2, Sq1 𝛾 ′4 0 0

4 𝛾 ′22 , 𝛾
′
4 0 0 0

3 Sq1 𝛾 ′2 0 0 0 0

2 𝛾 ′2 0 0 0 0 𝛾 ′2𝜌2𝜄5, 𝛾
′
2𝛾5

1 0 0 0 0 0 0

0 Z/2 0 0 0 0 𝜌2𝜄5, 𝛾5

0 1 2 3 4 5

B1: 𝐻𝑝 (𝐾 (Z ⊕ Z/2, 5), 𝐻𝑞 (BSO(3)≤4 × 𝐾 (Z/2, 4),Z/2)
=⇒ 𝐻𝑝+𝑞 (𝐾 (Z/2, 2),Z/2).

6 𝛾 ′32 , (Sq1 𝛾 ′2)2, 𝑡 0

5 𝛾 ′2 Sq1 𝛾 ′2, 𝑘 0 0

4 𝛾 ′22 0 0 0

3 Sq1 𝛾 ′2 0 0 0 0

2 𝛾 ′2 0 0 0 0 𝛾 ′2𝛾5

1 0 0 0 0 0 0

0 Z/2 0 0 0 0 𝛾5

0 1 2 3 4 5

C1: 𝐻𝑝 (𝐾 (Z/12, 5), 𝐻𝑞 (𝐹,Z/2)) =⇒ 𝐻𝑝+𝑞 (𝐾 (Z/2, 2),Z/2).

We have a map 𝐴1 → 𝐵1, by comparing the differentials 𝑑 : 𝐸0,6 → 𝐸5,2 in these spectral
sequences, we deduce that 𝑑 (𝑡) = 𝛾 ′2𝜌2𝜄5 in B1. We also have a map 𝐶1→ 𝐵1, by Lemma 6.34
we know that 𝛾5 in C1 is mapped to 𝜌2𝜄5 in B1. By comparing the differentials in B1 and C1 we
have the following commutative square

𝑡 + 𝑎 Sq2 𝛾 ′4 + 𝑏𝛾 ′2𝛾 ′4 𝛾 ′2𝜌2𝜄5 + 𝑏𝛾 ′2𝛾5 = 𝛾 ′2𝜌2𝜄5

𝑡 𝛾 ′2𝛾5

𝑑𝐵1

𝑑𝐶1
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because𝑑𝐵1(Sq2 𝛾 ′4) = 0 (Sq2 𝛾 ′4 maps to Sq2 𝛾4 via the edge homomorphism) and𝑑𝐵1(𝛾 ′2𝛾 ′4) = 𝛾 ′2𝛾5
(by multiplicativity); thus 𝑏 = 0. Secondly, an inspection of the spectral sequence of the fiber
sequence

𝐾 (Z/12, 4) 𝐹 𝐾 (Z/2, 2)

6 Sq2 𝛾4

5 𝜁4 0

4 𝛾4 0 𝛾4𝛾2

3 0 0 0 0

2 0 0 0 0 0

1 0 0 0 0 0 0

0 Z/2 0 𝛾2 Sq1 𝛾2 𝛾22
Sq2 Sq1 𝛾2,
𝛾2 Sq1 𝛾2

𝛾32 ,
(Sq1 𝛾2)2

𝛾42 , 𝛾2(Sq1 𝛾2)2,
Sq1 𝛾2 Sq2 Sq1 𝛾2

0 1 2 3 4 5 6 7

𝐻𝑝 (𝐾 (Z/2, 2), 𝐻𝑞 (𝐾 (Z/12, 4),Z/2)) =⇒ 𝐻𝑝+𝑞 (𝐹,Z/2)

implies that the edge homomorphism

𝐻 6(𝐹,Z/2) → 𝐻 6(𝐾 (Z/12, 4),Z/2)

maps 𝑡 to Sq2 𝛾4. Consider the following commutative square given by rotating two bottom
fiber sequences in 6.35 once

𝐾 (Z ⊕ Z/2, 4) BSO(3)≤4 × 𝐾 (Z/2, 4)

𝐾 (Z/12, 4) 𝐹,

Ω𝑓

by Lemma 6.34 we know the map induced in cohomology by the left vertical arrow; namely, we
have the following commutative square in sixth cohomology

Sq2 𝜌2𝜄4 𝑡 + 𝑎 Sq2 𝛾 ′4

Sq2 𝛾4 𝑡 .

Thus, we conclude that 𝑎 = 0, because otherwise Sq2 𝛾4 would appear in the top left corner. To
sum up, we proved
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Proposition 6.36. There is a commutative diagram with vertical arrows being isomorphisms

Z/2⟨𝛾 ′32 , (Sq1 𝛾 ′2)2, Sq2 𝜌2𝜄′4,
𝛾 ′2𝜌2𝜄

′
4, 𝑡⟩

Z/2⟨𝛾 ′32 , (Sq1 𝛾 ′2)2, Sq2 𝜌2𝜄′4,
𝛾 ′2𝜌2𝜄

′
4, 𝛾
′
2𝛾
′
4, Sq2 𝛾 ′4, 𝑡⟩

Z/2⟨𝛾 ′32 , (Sq1 𝛾 ′2)2, Sq2 𝜌2𝜄′4,
𝛾 ′2𝜌2𝜄

′
4, 𝑡⟩

𝐻 6(BTSG(4)≤4,Z/2) 𝐻 6(BSTop(4)≤4,Z/2) 𝐻 6(BSO(4)≤4,Z/2)

≃ ≃ ≃

and the top horizontal arrows map classes with the same names to each other.

Finally, we are ready to prove Theorem 6.1. For this consider the diagram of Postnikov towers

BSO(4)≥5 BSO(4) BSO(4)≤4 𝐾 (Z/2 ⊕ Z/2, 6)

BSTop(4)≥5 BSTop(4) BSTop(4)≤4 𝐾 (Z/2 ⊕ Z/2, 6)

BSG(4)≥5 BSG(4) BSG(4)≤4 𝐾 (Z/2 ⊕ Z/2, 6),

≃

≃

we apply Lemma 4.12 to these Postnikov towers and investigate the corresponding diagram of
the Serre exact sequences
𝐻 5(BSO(4)≥5,Z/2 ⊕ Z/2) 𝐻 6(BSO(4)≤4,Z/2 ⊕ Z/2) 𝐻 6(BSO(4),Z/2 ⊕ Z/2)

𝐻 5(BSTop(4)≥5,Z/2 ⊕ Z/2) 𝐻 6(BSTop(4)≤4,Z/2 ⊕ Z/2) 𝐻 6(BSTop(4),Z/2 ⊕ Z/2)

𝐻 5(BSG(4)≥5,Z/2 ⊕ Z/2) 𝐻 6(BSG(4)≤4,Z/2 ⊕ Z/2) 𝐻 6(BSG(4),Z/2 ⊕ Z/2) .

𝜏BSO

Id
𝜏BSTop

Id
𝜏BSG

𝛼

The whole diagram splits as the direct sum of two copies of the same diagram, but with Z/2
coefficients, since the corresponding Serre spectral sequences also split in the same manner.
Moreover, from Remark 6.20, we know that the both leftmost vertical arrows are the identity
and we know the middle vertical maps from Proposition 6.36. By commutativity of the diagram,
we have 𝑘2,BSTop(4) = 𝜏BSTop(𝛾5) ∈ 𝐻 6(BSTop(4)≤4,Z/2 ⊕ Z/2) is equal to 𝛼 (𝜏BSG(𝛾5)). By
Proposition 6.36, this implies that 𝑘2,BSTop(4) is the same as 𝑘2,BSG(4) = 𝑘2,BSO(4) .

Remark 6.37. Note that we do not know exactly what this 𝑘-invariant is, the best we can
say is that it is a linear combination of 𝑎𝛾 ′2𝜌2𝜄′4 + 𝑡 and 𝛾 ′2𝜌2𝜄′4 + Sq2 𝜄′4 for some 𝑎 ∈ Z/2 in both
copies of Z/2 coefficients in 𝐻 6(BSTop(4)≤4,Z/2 ⊕ Z/2). The first class appears because 𝑡 is
the 𝑘-invariant of BSO(3) and the second class appears because it is mapped to𝑤2𝑤4 + Sq2𝑤4
in 𝐻 6(BSTop(4),Z/2) which is zero by Wu’s formula.

We have finally proved Theorem 6.1 because 𝑘2,BSTop(4) ∈ 𝐻 6(BSO(4)≤4 ×𝐾 (Z/2, 4),Z/2 ⊕ Z/2)
comes from BSO(4)≤4 under the projection map, therefore

BSTop(4)≤5 � BSO(4)≤5×𝐾 (Z/2, 4) = fib(BSO(4)≤4×𝐾 (Z/2, 4)
𝑘2,BSO(4)◦pr1−−−−−−−−−→ 𝐾 (Z/2⊕Z/2, 6)) .
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We have already discussed why the 𝐾 (Z/2, 4) factor corresponds to the Kirby-Siebenmann class
and the composition

BSO(4) → BSTop(4) → BSTop(4)≤5 � BSO(4)≤5 × 𝐾 (Z/2, 4)
pr1−−→ BSO(4)≤5

is 6-connected because the following diagram commutes by Lemma 4.8

BSO(4) BSO(4)≤5

BSTop(4) BSO(4)≤5 × 𝐾 (Z/2, 4) .

𝑖1
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7 Classification of vector bundles and microbundles

In this section, we recall the theorem of Dold and Whitney on the classification of oriented
vector bundles over CW complexes of dimension 4 (Theorem 7.1) and prove a similar statement
for microbundles (Theorem 7.2) using computations from Section 6. It is possible to deduce
Theorem 7.2 from Theorem 7.1 and Theorem 6.1 directly, but for the completeness of the
exposition we prove it without using the theorem of Dold and Whitney. We use an approach
similar to [ČV93]; we consider a map from BSTop(4) to a product of Eilenberg-Maclane spaces
given by characteristic classes and investigate its Moore-Postnikov tower.

Theorem 7.1 (Dold-Whitney [DW59]). Let X be a CW complex of dimension 4 with no 2-torsion
in 𝐻 4(𝑋,Z). Then the maps:

Vect+3 (𝑋 )
(𝑤2,𝑝1 )−−−−−→ 𝐻 2(𝑋,Z/2) × 𝐻 4(𝑋,Z),

Vect+4 (𝑋 )
(𝑤2,𝑒,𝑝1 )−−−−−−−→ 𝐻 2(𝑋,Z/2) × 𝐻 4(𝑋,Z) × 𝐻 4(𝑋,Z),

Vect+𝑚 (𝑋 )
(𝑤2,𝑤4,𝑝1 )−−−−−−−−→ 𝐻 2(𝑋,Z/2) × 𝐻 4(𝑋,Z/2) × 𝐻 4(𝑋,Z), for𝑚 > 4;

are injective and their images consist of the following sets of tuples respectively:

{(𝑎, 𝑐) : 𝜌4𝑐 = 𝑃𝑎},

{(𝑎, 𝑏, 𝑐) : 𝜌4𝑐 = 𝑃𝑎 + 2𝜌4𝑏},
{(𝑎, 𝑏, 𝑐) : 𝜌4𝑐 = 𝑃𝑎 + 𝜄∗𝑏},

where 𝑃 : 𝐻 2(−,Z/2) → 𝐻 4(−,Z/4) is the Pontryagin square and 𝜄∗ : 𝐻 4(−,Z/2) → 𝐻 4(−,Z/4)
is the multiplication by 2.

Nowwewill formulate a similar statement for microbundles. Firstly, notice that the theorem uses
the first Pontryagin class which has a slightly different definition formicrobundles 5.10. Secondly,
we have to take into account the new Kirby-Siebenmann class ks ∈ 𝐻 4(BSTop(4),Z/2).
Theorem 7.2. Let X be a topological 4-manifold or a locally finite 4-dimensional simplicial
complex with no 2-torsion in 𝐻 4(𝑋,Z). Then the maps:

Mic+3 (𝑋 )
(𝑤2,𝑝̃1 )−−−−−→ 𝐻 2(𝑋,Z/2) × 𝐻 4(𝑋,Z),

Mic+4 (𝑋 )
(𝑤2,𝑒,𝑝1,ks)−−−−−−−−−→ 𝐻 2(𝑋,Z/2) × 𝐻 4(𝑋,Z) × 𝐻 4(𝑋,Z) × 𝐻 4(𝑋,Z/2),

Mic+𝑚 (𝑋 )
(𝑤2,𝑤4,𝑝1,ks)−−−−−−−−−−→ 𝐻 2(𝑋,Z/2) × 𝐻 4(𝑋,Z/2) × 𝐻 4(𝑋,Z) × 𝐻 4(𝑋,Z/2), for𝑚 > 4;

are injective and their images consist of the following sets of tuples respectively:

{(𝑎, 𝑐) : 𝜌4𝑐 = 𝑃𝑎},

{(𝑎, 𝑏, 𝑐, 𝑑) : 𝜌4𝑐 = 𝑃𝑎 + 2𝜌4𝑏},
{(𝑎, 𝑏, 𝑐, 𝑑) : 𝜌4𝑐 = 𝑃𝑎 + 𝜄∗𝑏},

where 𝑃 : 𝐻 2(−,Z/2) → 𝐻 4(−,Z/4) is the Pontryagin square and 𝜄∗ : 𝐻 4(−,Z/2) → 𝐻 4(−,Z/4)
is the multiplication by 2.
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Remark 7.3. In fact, Theorem 7.2 also works if 𝑋 is a paracompact space which has homotopy
type of a locally finite 4-dimensional simplicial complex; for example, if 𝑋 is a locally finite
4-dimensional CW complex. Indeed, this follows from the fact that Mic+𝑚 (𝑋 ) is invariant under
homotopy equivalences of paracompact spaces by themicrobundle homotopy theorem (Theorem
3.1 in [Mil64]) for any𝑚 > 0.

For now, we focus on the case of 4-dimensional microbundles and explain the other cases in the
end. Consider the map

BSTop(4)
(𝑤2,𝑒,𝑝1,ks)−−−−−−−−−→ 𝐾 (Z/2, 2) × 𝐾 (Z, 4) × 𝐾 (Z, 4) × 𝐾 (Z/2, 4) ≕ 𝐾

and denote it with 𝛼 . Now consider the long exact sequence of homotopy groups associated to
the fiber sequence

fib(𝛼) → BSTop(4) 𝛼−→ 𝐾.

The map 𝜋2 BSTop(4) → 𝜋2𝐾 is an isomorphism because BSTop(4) 𝑤2−−→ 𝐾 (Z/2, 2) is the first
stage of the Postnikov tower of BSTop(4). Therefore, the first possible nontrivial homotopy
group of fib(𝛼) is 𝜋3 fib(𝛼), which we prove to be isomorphic to Z/4. From the long exact
sequence of homotopy groups we have

𝜋4(BSTop(4))
(𝑒,𝑝1,ks)−−−−−−→ Z ⊕ Z ⊕ Z/2→ 𝜋3 fib(𝛼) → 0.

To examine this cokernel we prove

Lemma 7.4. The map
𝜋4(BSTop(4)) → Z ⊕ Z ⊕ Z/2

𝜉 ↦→ (𝑒 (𝜉), 𝑝1(𝜉) + 2𝑒 (𝜉)4 , ks(𝜉))

is well-defined and is an isomorphism.

Proof. Firstly, it directly follows from Milnor’s computations in [Mil56] that the map

𝜋4 BSO(4)
(𝑒, 𝑝1+2𝑒4 )
−−−−−−−→ Z ⊕ Z

is an isomorphism. Combining this isomorphism with Theorem 6.1 we have a commutative
diagram of isomorphisms

𝜋4 BSTop(4) 𝜋4(BSO(4)≤5 × 𝐾 (Z/2, 4))

Z ⊕ Z ⊕ Z/2,

≃

(𝑒, 𝑝̃1+2𝑒4 ,ks)
(𝑒′, 𝑝

′
1+2𝑒

′
4 ,ks)

where 𝑒′, 𝑝′1 ∈ 𝐻 4(BSO(4)≤4,Z) are the classes corresponding to 𝑒, 𝑝1 ∈ 𝐻 4(BSO(4),Z). □
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By Lemma 7.4 we have a commutative diagram

𝜋4 BSTop(4) Z ⊕ Z ⊕ Z/2

Z ⊕ Z ⊕ Z/2

(𝑒,𝑝1,ks)

(𝑒, 𝑝1+2𝑒4 ,ks)
𝑓

with 𝑓 given by the matrix

𝑓 =
©­«
1 −2 0
0 4 0
0 0 1

ª®¬
and therefore 𝜋3 fib(𝛼) ≃ Z/4. Now consider a Moore-Postnikov tower of BSTop(4) 𝛼−→ 𝐾

MP(𝛼)4

fib(𝛼) BSTop(4) 𝐾 𝐾 (Z/4, 4) .𝛼 𝑘

Note also that 𝜋4 fib(𝛼) = 0, hence MP(𝛼)4 = MP(𝛼)3. By Lemma 4.16, the 𝑘-invariant 𝑘 ∈
𝐻 4(𝐾, 𝜋3 fib(𝛼)) is equal to the transgression of the fundamental class 𝛾3 ∈ 𝐻 3(fib(𝛼), 𝜋3 fib(𝛼))
in the Serre spectral sequence

𝐻𝑝 (𝐾,𝐻𝑞 (fib(𝛼), 𝜋3 fib(𝛼))) =⇒ 𝐻𝑝+𝑞 (BSTop(4), 𝜋3 fib(𝛼)) .

As usual, we consider the associated Serre exact sequence
𝐻 3(BSTop(4),Z/4) 𝐻 3(fib(𝛼),Z/4) 𝐻 4(𝐾,Z/4) 𝐻 4(BSTop(4),Z/4)

Z/2 Z/4 Z/4⟨𝜌4𝜄14, 𝜌4𝜄24, 𝑃𝛾2⟩ ⊕ Z/2⟨𝛾4⟩ Z/4⟨𝜌4𝑒, 𝜌4𝑝1⟩ ⊕ Z/2⟨ks⟩.

≃ ≃ ≃ ≃

We claim that the kernel of the rightmost horizontal map is generated by the class 𝜌4𝜄24−𝑃𝛾2−𝜌4𝜄14
(where 𝜄14, 𝜄24 denote the corresponding fundamental classes in 𝐻 4(𝐾 (Z ⊕ Z, 4),Z)). It is enough
to prove that there is a relation 𝜌4𝑝1 = 𝑃𝑤2 + 2𝜌4𝑒 in 𝐻 4(BSTop(4),Z/4) to verify the claim.
By Lemma 1 in [Mil58] this relation holds in cohomology of BSO(4). Moreover, we know that
there is a relation

𝑃𝑤2 = 𝑎𝜌4𝑝1 + 𝑏𝜌4𝑒 + 𝑐 ks

for some 𝑎, 𝑏 ∈ Z/4, 𝑐 ∈ Z/2. By mapping to 𝐻 4(BSO(4),Z/4), we deduce that 𝑎 = 1, 𝑏 = −2. In
addition, 𝑐 = 0 because there are microbundles with the same 𝑃𝑤2, 𝑝1, 𝑒 but different ks over 𝑆4
(Lemma 7.4).
Thus, by the exactness of the Serre sequence we conclude that 𝑘 = ±(𝜌4𝜄24 − 𝑃𝛾2 − 2𝜌4𝜄14).
Now we can prove Theorem 7.2.

proof of 7.2 (the case of 4-dimensional microbundles). Recall that there is a bijection Mic+4 (𝑋 ) ≃
[𝑋, BSTop(4)] by 2.11. Furthermore, theMoore-Postnikov tower induces a bijection [𝑋, BSTop(4)] →
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[𝑋,MP(𝛼)4] since BSTop(4) → MP(𝛼)4 is 5-connected and 𝑋 has homotopy type of a 4-
dimensional CW complex. The fiber sequence

MP(𝛼)4 → 𝐾
𝑘−→ 𝐾 (Z/4, 4)

induces an exact sequence of pointed sets
[𝑋,Ω𝐾] [𝑋,𝐾 (Z/4, 3)] [𝑋,MP(𝛼)4] [𝑋,𝐾] [𝑋,𝐾 (Z/4, 4)]

𝐻 1(𝑋,Z/2) × 𝐻 3(𝑋,𝐺) 𝐻 3(𝑋,Z/4) Mic+4 (𝑋 ) 𝐻 2(𝑋,Z/2) × 𝐻 4(𝑋,𝐺) 𝐻 4(𝑋,Z/4),

Ω𝑘∗

≃ ≃ ≃

𝑘∗

≃ ≃

Ω𝑘∗ 𝑘∗

where𝐺 ≔ Z ⊕ Z ⊕ Z/2 and Ω𝑘 : 𝐾 → 𝐾 (Z/4, 3) is the map induced by the functoriality of the
loop space. Thus, the map

Mic+4 (𝑋 )
(𝑤2,𝑒,𝑝̃1,ks)−−−−−−−−−→ 𝐻 2(𝑋,Z/2) × 𝐻 4(𝑋,Z ⊕ Z ⊕ Z/2)

is injective if an only if Ω𝑘∗ is surjective. Moreover, its image is equal to

ker(𝑘∗) = {(𝑎, 𝑏, 𝑐, 𝑑) : 𝜌4𝑐 = 𝑃𝑎 + 2𝜌4𝑏};

hence, it only remains to prove that Ω𝑘∗ is surjective whenever 𝐻 4(𝑋,Z) contains no 2-torsion.
Write 𝜎 for the composition

𝜎 : 𝐻𝑘 (𝐾 (Z/2, 2) × 𝐾 (𝐺, 4),Z/4) → 𝐻𝑘 (Σ(𝐾 (Z/2, 1) × 𝐾 (𝐺, 3)),Z/4) →
Σ−→ 𝐻𝑘−1(𝐾 (𝐺, 3),Z/4),

then 𝜎𝑘 = Ω𝑘 (where Ω𝑘 is considered as an element of 𝐻 3(𝐾 (𝐺, 3),Z/4)) since the following
diagram

[𝐾 (𝐴, 2) × 𝐾 (𝐵, 4), 𝐾 (𝐶, 4)] [Ω(𝐾 (𝐴, 2) × 𝐾 (𝐵, 4)),Ω𝐾 (𝐶, 4)] [𝐾 (𝐴, 1) × 𝐾 (𝐵, 3),Ω𝐾 (𝐶, 4)]

[Σ(𝐾 (𝐴, 1) × 𝐾 (𝐵, 3)), 𝐾 (𝐶, 4)] [𝐾 (𝐴, 1) × 𝐾 (𝐵, 3),Ω𝐾 (𝐶, 4)] [𝐾 (𝐴, 1) × 𝐾 (𝐵, 3), 𝐾 (𝐶, 3)]

Ω ≃

≃

≃

≃

≃

commutes for any abelian groups 𝐴, 𝐵,𝐶 by naturality of the (Σ,Ω) adjunction. Therefore, we
have

𝑘 = ±(𝜌4𝜄24 − 𝑃𝛾2 − 2𝜌4𝜄14) ∈ 𝐻 4(𝐾 (Z/2, 2) × 𝐾 (Z ⊕ Z ⊕ Z/2, 4),Z/4),
𝜎𝑘 = ±(𝜎𝜌4𝜄24−𝜎𝑃𝛾2−2𝜎𝜌4𝜄14) = ±(𝜌4𝜄23−𝜎𝑃𝛾2−2𝜌4𝜄13) ∈ 𝐻 3(𝐾 (Z/2, 1)×𝐾 (Z⊕Z⊕Z/2, 3),Z/4) .
Hence, Ω𝑘∗ = 𝜎𝑘∗ is given by

𝐻 1(𝑋,Z/2) × 𝐻 3(𝑋,Z ⊕ Z ⊕ Z/2) → 𝐻 3(𝑋,Z/4)

(𝑎, 𝑏, 𝑐, 𝑑) ↦→ ±(𝜌4𝑐 − (𝜎𝑃)∗(𝑎) − 2𝜌4(𝑏))
and it is surjective because the reduction mod 4 𝜌4 : 𝐻 3(𝑋,Z) → 𝐻 3(𝑋,Z/4) is surjective when
there is no 2-torsion in 𝐻 4(𝑋,Z) by the Bockstein exact sequence. □

The cases of𝑚-dimensional microbundles for𝑚 = 3,𝑚 > 4 follow by a similar computation of
Moore-Postnikov towers, Smale’s conjecture BO(3) ≃ BTop(3) ([Hat83]) and Milgram’s stable
result on the Postnikov tower of BSTop − Theorem 5.9.
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A Appendix

In this appendix we provide tables of cohomology groups of the relevant Eilenberg-Maclane
spaces and elaborate on some of the cohomology operations which generate them.
We write

𝜄𝑛 ∈ 𝐻𝑛 (𝐾 (Z, 𝑛),Z),

𝛾𝑛 ∈ 𝐻𝑛 (𝐾 (Z/𝑘, 𝑛),Z/𝑘),

for the fundamental classes;

𝜌𝑘 : 𝐻𝑛 (−,Z) → 𝐻𝑛 (−,Z/𝑘),

for the reduction mod k;
𝛽𝑘 : 𝐻𝑛 (−,Z/𝑘) → 𝐻𝑛 (−,Z),

for the Bockstein homomorphism;

Sq𝑖 : 𝐻𝑛 (−,Z/2) → 𝐻𝑛+𝑖 (−,Z/2),

for the Steenrod operations;

𝑃 : 𝐻 2𝑛 (−Z/2) → 𝐻 4𝑛 (−,Z/4),

for the Pontryagin square (more information about this operation can be found in [MT08]
Chapter 2).

Definition A.1. Let 𝐼 = (𝑖𝑛, 𝑖𝑛−1, ..., 𝑖0) be a sequence of natural numbers. I is called admissible
if 𝑖𝑘 ≥ 2𝑖𝑘−1 for all 𝑘 > 0 and 𝑖0 > 0. We also say that the empty sequence is admissible. Excess
of 𝐼 is the number 𝑒 (𝐼 ) ≔ 𝑖0 + (𝑖1 − 2𝑖0) + ... + (𝑖𝑛 − 2𝑖𝑛−1).

Denote Sq𝐼 𝑥 ≔ Sq𝑖𝑛 Sq𝑖𝑛−1 ... Sq𝑖0 𝑥 and Sq∅ 𝑥 ≔ 𝑥 . Serre proved the following theorem

Theorem A.2 ([MT08] Chapter 9).

1. 𝐻 ∗(𝐾 (Z, 𝑛),Z/2) is a polynomial ring over Z/2 with generators {Sq𝐼 𝜌2𝜄𝑛} where 𝐼 runs
through all admissible sequences of excess less than 𝑛 and 𝑖0 ≠ 1.

2. 𝐻 ∗(𝐾 (Z/2, 𝑛),Z/2) is a polynomial ring over Z/2 with generators {Sq𝐼 𝛾𝑛} where 𝐼 runs
through all admissible sequences of excess less than 𝑛.

3. 𝐻 ∗(𝐾 (Z/2𝑚, 𝑛),Z/2) is a polynomial ring over Z/2 with generators {Sq𝐼𝑚 𝛾𝑛} where 𝐼𝑚
runs through all admissible sequences of excess less than 𝑛, Sq𝐼𝑚 ≔ Sq𝐼 if 𝑖0 > 1 and Sq𝐼𝑚 ≔

Sq𝑖𝑛 Sq𝑖𝑛−1 ... Sq𝑖1 𝜁𝑛 with 𝜁𝑛 being the generator of 𝐻𝑛+1(𝐾 (Z/2𝑚, 𝑛),Z/2) otherwise.
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This provides us information about cohomology of these spaces with Z/2 coefficients. Using
the Serre spectral sequences of the fiber sequences

𝐾 (Z, 𝑛) → 𝐾 (Z, 𝑛) → 𝐾 (Z/2, 𝑛),

𝐾 (𝐴,𝑛) → ∗ → 𝐾 (𝐴,𝑛 + 1),

one can also deduce some information about the integral cohomology of these Eilenberg-
Maclane spaces. We provide a table with some of these groups

𝐻 𝑖 (𝐾 (Z, 𝑛),Z/2) 𝑖 = 3 4 5 6 7 8
𝑛 = 2 0 ⟨𝜌2𝜄22⟩ 0 ⟨𝜌2𝜄32⟩ 0 ⟨𝜌2𝜄42⟩
3 ⟨𝜌2𝜄3⟩ 0 ⟨Sq2 𝜌2𝜄3⟩ ⟨𝜌2𝜄23⟩ 0 ⟨𝜌2𝜄3 Sq2 𝜌2𝜄3⟩
4 0 ⟨𝜌2𝜄4⟩ 0 ⟨Sq2 𝜌2𝜄4⟩ ⟨Sq3 𝜌2𝜄4⟩ ⟨𝜌2𝜄24⟩
5 0 0 ⟨𝜌2𝜄5⟩ 0 ⟨Sq2 𝜌2𝜄5⟩ ⟨Sq3 𝜌2𝜄5⟩

𝐻 𝑖 (𝐾 (Z/2, 𝑛),Z) 𝑖 = 3 4 5 6 7 8
𝑛 = 1 0 Z/2⟨(𝛽2𝛾1)2⟩ 0 Z/2⟨(𝛽2𝛾1)3⟩ 0 Z/2⟨(𝛽2𝛾1)4⟩
2 Z/2⟨𝛽2𝛾2⟩ 0 Z/4⟨𝛽4𝑃𝛾2⟩ Z/2⟨(𝛽2𝛾2)2⟩ Z/2⟨𝛽2(𝛾32 )⟩ Z/2⟨𝛽2𝛾2𝛽4𝑃𝛾2⟩

𝐻 𝑖 (𝐾 (Z/2, 𝑛),Z/2) 𝑖 = 3 4 5 6 7 8
𝑛 = 1 ⟨𝛾31⟩ ⟨𝛾41⟩ ⟨𝛾51⟩ ⟨𝛾61⟩ ⟨𝛾71⟩ ⟨𝛾81⟩
2 ⟨Sq1 𝛾2⟩ ⟨𝛾22⟩ ⟨𝛾2 Sq1 𝛾2, Sq2 Sq1 𝛾2⟩ ⟨𝛾32 , (Sq1 𝛾2)2⟩ ⟨𝛾2 Sq2 Sq1 𝛾2, ⟨𝛾42 , 𝛾2(Sq1 𝛾2)2,

𝛾22 Sq1 𝛾2⟩ Sq1 𝛾2 Sq2 Sq1 𝛾2⟩
𝐻 𝑖 (𝐾 (Z/12, 𝑛),Z/2) 𝑖 = 3 4 5 6 7 8

𝑛 = 5 0 0 ⟨𝛾5⟩ ⟨𝜁5⟩ ⟨Sq2 𝛾5⟩ ⟨Sq3 𝛾5, Sq2 𝜁5⟩
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